DOI QR코드

DOI QR Code

레드머드 대체율에 따른 폴리머 혼입 알칼리활성화 슬래그-레드머드 시멘트모르타르의 강도 및 기공특성

Strength and Pore Characteristics of Alkali-activated Slag-Red Mud Cement Mortar used Polymer According to Red Mud Content

  • 권성준 (한남대학교 건설시스템공학과) ;
  • 강석표 (우석대학교 건축.인테리어디자인학교)
  • 투고 : 2015.08.18
  • 심사 : 2015.12.30
  • 발행 : 2016.03.01

초록

알칼리활성화 슬래그-레드머드 시멘트는 알칼리활성화 시멘트 연구의 일환으로서 시멘트 조성에서 알칼리자극제, 고로슬래그와 레드머드로 구성되어져 있으며, 포틀랜트 시멘트를 사용하지 않는 클링커 프리 시멘트(Clinker Free Cement)를 의미한다. 본 논문에서는 포틀랜트 시멘트를 전혀 사용하지 않고 고분자 유기화합물인 재유화형 분말 폴리머를 혼입한 알칼리활성화 슬래그 시멘트에 레드머드의 대체율을 달리하여 강도특성, 기공특성 등을 기존 포틀랜트 시멘트와 비교 평가하였다. 그 결과 알칼리활성화 시멘트에 레드머드를 대체할 경우 C-S-H 광물상과 에트린가이트가 주요 수화생성물로 포틀랜트 시멘트와 비교하여 조직이 치밀하고 대체율 10%까지는 압축강도 및 휨강도가 증가하였다.

The alkali-slag-red mud(ASRC) cement belongs to clinker free cementitious material, which is made from alkali activator, blast-furnace slag(BFS) and red mud in designed proportion. This study is to investigate strength and pore characteristics of alkali-activated slag cement(NC), clinker free cementitious material, and ordinary portland cement(C) mortars using polymer according to red mud content. The results showed that the hardened alkali-activated slag-red mud cement paste was mostly consisted of C-S-H gel, being very fine in size and extremely irregular in its shape. So the hardened ASRC cement paste has lower total porosity, less portion of larger pore and more portion of smaller pore, as compared with those of hardened portland cement paste, and has higher strength within containing 10 wt.(%) of alkali-activated slag cement(NC) substituted by red mud.

키워드

참고문헌

  1. Daniel, V. R, Joao, A. L., and Marcio, R. M. (2011), Potential Use of Natural Red Mud as Pozzolan for Portland Cement, Materials Research, 14(1), 66-66.
  2. Kang, S. P. (2012), A Study on the Usability of Red Mud as Activator of Alkali-Activated Cementless Binder, Journal of the Architectural Institute of Korea Structure & Construction, 28(11), 133-140.
  3. Kim, G. W., Kim, B. J., Yang, K. H., and Song, J. K. (2012), Strength Development of Blended Sodium Alkali-Activated Ground Granulated Blast-Furnace Slag(GGBS) Mortar, Journal of the Korea Concrete Institute, 24(2), 134-145.
  4. Kim, T. W., and Jun, Y. B. (2015), The Strength and Drying Shrinkage Properties of Alkali-activated Slag using Hard-burned MgO, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(3), 39-47. https://doi.org/10.11112/jksmi.2015.19.3.039
  5. Moon, K. J. (2003), Properties of non-sintered cement and concrete recycled with industrial waste, Chonbuk National University, Ph.D thesis, 61-172.
  6. Pacheco-torcal, F., Labrincha, J., and Leonelli, C. (2014), Handbook of Alkali-activated cements, Mortars and Concretes, Elsevier Science Ltd, 243-257.
  7. Pan, Z., Cheng, L., Lu, Y., and Yang, N. (2002), Hydration Products of Alkali-Activated Slag-Red Mud Cementitious Material, Cement and Concrete Research, 32, 357-362. https://doi.org/10.1016/S0008-8846(01)00683-4
  8. Pan, Z., Li, D., Yu, J., and Yang, N. (2003), Properties and Microstructure of the Hardened Alkali-Activated Red Mud-Slag Cementitious Material, Cement and Concrete Research, 33, 1437-1441. https://doi.org/10.1016/S0008-8846(03)00093-0
  9. Pontikes, Y., and Angelopoulos, G. N. (2013), Bauxite residue in cement and cementitious applications : Current status and a possible way forward, Resources, Conservation and Recycling, 73, 53-63. https://doi.org/10.1016/j.resconrec.2013.01.005