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ON QUASI-COMMUTATIVE RINGS

Da Woon Jung, Byung-Ok Kim, Hong Kee Kim, Yang Lee, Sang Bok Nam,

Sung Ju Ryu, Hyo Jin Sung, and Sang Jo Yun

Abstract. We study the structure of central elements in relation with
polynomial rings and introduce quasi-commutative as a generalization of
commutative rings. The Jacobson radical of the polynomial ring over
a quasi-commutative ring is shown to coincide with the set of all nilpo-

tent polynomials; and locally finite quasi-commutative rings are shown to
be commutative. We also provide several sorts of examples by showing
the relations between quasi-commutative rings and other ring properties
which have roles in ring theory. We examine next various sorts of ring
extensions of quasi-commutative rings.

1. Introduction

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Let J(R), N0(R), N∗(R), N∗(R), and N(R) denote the Ja-
cobson radical, the Wedderburn radical, the prime radical, the upper nilradical
(i.e., sum of all nil ideals), and the set of all nilpotent elements in a given ring R
(possibly without identity), respectively. It is well-known that N∗(R) ⊆ J(R)
and N0(R) ⊆ N∗(R) ⊆ N∗(R) ⊆ N(R). C(R) means the center of R, i.e.,
the set of all central elements in R. The polynomial (resp., power series) ring
with an indeterminate x over R is denoted by R[x] (resp., R[[x]]) and for any
polynomial (resp., power series) f(x) in R[x] (resp., R[[x]]), let Cf(x) denote
the set of all coefficients of f(x). Zn denotes the ring of integers modulo n.
Denote the n by n upper triangular matrix ring over R by Un(R). Use eij for
the matrix with (i, j)-entry 1 and elsewhere 0. |S| denotes the cardinality of a
given set S.

A ring (possibly without identity) is usually called reduced if it has no
nonzero nilpotent elements. Let R be a reduced ring and suppose that f(x)g(x)
= 0 for f(x), g(x) ∈ R[x]. In this situation, Armendariz [3, Lemma 1] proved
that ab = 0 for all a ∈ Cf(x), b ∈ Cg(x). Rege and Chhawchharia [12] called
a ring (possibly without identity) Armendariz if it satisfies such property. So
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reduced rings are clearly Armendariz. This fact will be used freely in this note.
A ring is usually called Abelian if every idempotent is central. Armendariz
rings are Abelian by the proof of [2, Theorem 6] (or [11, Lemma 7]).

We see in the following an equivalent condition to the commutativity of rings
by applying the Armendariz property to power series rings on centers.

Lemma 1.1. For a ring R the following conditions are equivalent:
(1) R is commutative;
(2) If f(x)g(x) ∈ C(R)[[x]] for f(x), g(x) ∈ R[[x]], then ab ∈ C(R) for all

a ∈ Cf(x), b ∈ Cg(x);
(3) If ab ∈ C(R) for a, b ∈ R then aRb ⊆ C(R).

Proof. It suffices to show (2) ⇒ (1) and (3) ⇒ (1).
(2) ⇒ (1). Suppose that the condition (2) holds. Let a ∈ R and consider

two power series f(x) = 1 − ax, g(x) = 1 + ax + a2x2 + · · · + anxn + · · · in
R[[x]]. Then f(x)g(x) = 1, so we have a ∈ C(R) by the condition (2).

(3) ⇒ (1). Suppose that the condition (3) holds. Then 1 ·1 = 1 implies that
r = 1r1 ∈ C(R) for all r ∈ R. �

We shall consider next a class of rings which is provided by Armendariz ring
property over centers, applying the condition (2) in Lemma 1.1 to polynomials.
This is given in the following.

Definition 1.2. A ring R is said to be quasi-commutative if ab ∈ C(R) for all
a ∈ Cf(x) and b ∈ Cg(x) whenever two polynomials f(x), g(x) ∈ R[x] satisfy
f(x)g(x) ∈ C(R)[x].

Every commutative ring is clearly quasi-commutative ring, but there exist
quasi-commutative rings which are not commmutative as follows. It is easily
checked that C(R[x]) = C(R)[x], so we will use this fact freely.

Example 1.3. (1) Let K be a field and S be a set of noncommuting indeter-
minates over K. Suppose |S| ≥ 2. Let R be the free algebra generated by S
over K, and B be the set of all polynomials of zero constant in R. R is clearly
a noncommutative ring.

We first claim C(R) = K. To see this, let a = k + b ∈ C(R) with k ∈ K
and b ∈ B. Assume b 6= 0. Then there exists s ∈ S such that sb 6= bs. But
ks + sb = sa = as = ks + bs implies sb = bs, contradicting sb 6= bs. Thus we
have b = 0, entailing a = k. We obtain next C(R[x]) = C(R)[x] = K[x] by
claim.

Suppose that 0 6= f(x) =
∑m

i=0 aix
i and 0 6= g(x) =

∑n

j=0 bjx
j ∈ R[x]

satisfy f(x)g(x) ∈ C(R)[x]. Here we can express f(x), g(x) by

f(x) = f0 + f1 and g(x) = g0 + g1

for f0, g0 ∈ K[x], f1, g1 ∈ B[x]. Then

f(x)g(x) = f0g0 + f0g1 + f1g1 + f1g0 ∈ C(R)[x],
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entailing

f0g1 + f1g1 + f1g0 ∈ C(R)[x].

Here if f0 = 0 (i.e., f(x) = f1) or g0 = 0 (i.e., g(x) = g1), then 0 6= f(x)g(x) =
f0g1 + f1g1 + f1g0 ∈ C(R)[x]. This induces a contradiction since 0 6= f0g1 +
f1g1 + f1g0 ∈ B[x] and this cannot be contained in C(R)[x]. Thus f0 6= 0 and
g0 6= 0, entailing f(x)g(x) = f0g0 + f0g1 + f1g1 + f1g0 with f0g0 6= 0.

Since f0g1 + f1g1 + f1g0 /∈ C(R[x]) if nonzero, we must have f0g1 + f1g0 +
f1g1 = 0. But f0g1 + f1g0 + f1g1 = 0 implies

f0g1 + f1g0 = 0 and f1g1 = 0

since the degree of f1g1 is larger than one of f0g1 + f1g0. Thus we have f1 = 0
or g1 = 0.

If f1 = 0 (i.e., f(x) = f0), then f(x)g(x) = f0(g0 + g1) = f0g0 + f0g1 ∈
C(R)[x]. This forces f0g1 = 0 (hence g1 = 0) since f0g1 /∈ C(R[x]) if nonzero.
So f(x) = f0 and g(x) = g0.

Similarly if g1 = 0 (i.e. g(x) = g0), then f1g0 = g0f1 = 0 (hence f1 = 0) and
f(x) = f0 and g(x) = g0.

Consequently αβ ∈ K = C(R) for all α ∈ Cf(x) and β ∈ Cg(x), and therefore
R is quasi-commutative.

(2) Let K be a field and T = {ai, c | i ∈ I} be a set of noncommuting
indeterminates over K, where I is an index set. Set S = {ai | i ∈ I} and
assume |S| ≥ 2. Let A (resp., A0) be the free algebra generated by T (resp.,
S) over K, and J be the ideal of A generated by

ac− ca, abc− bac, and cn for all a, b ∈ S,

where n ≥ 2. Let B (resp., B0) be the set of all polynomials of zero constant
in A (resp., A0), and R = A/J . Identify ai’s and c with their images in R for
simplicity.

Every element of R can be written by r = k + s + t with k ∈ K, s ∈ B0,
and t ∈ cA. Assume s 6= 0. Then there exists u ∈ B0 such that su 6= us. This
yields uk + us+ ut = ur 6= ru = ku + su + tu, entailing r /∈ C(R). So we get
C(R) = K + cR.

Every polynomial f(x) over R can be expressed by

f(x) = f0 + f1 + f2 for f0 ∈ K[x], f1 ∈ B0[x], f2 ∈ cA[x].

Now let f(x)g(x) ∈ C(R)[x] for

0 6= f(x) = f0 + f1 + f2 and 0 6= g(x) = g0 + g1 + g2

with f0, g0 ∈ K[x], f1, g1 ∈ B0[x] and f2, g2 ∈ cA[x]. Then we have

f(x)g(x) = f0g0 + f0g1 + f1g1 + f1g0 + h ∈ C(R)[x]

for some h ∈ cA[x]. This yields

f0g1 + f1g1 + f1g0 ∈ C(R)[x]
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since f0g0, h ∈ C(R)[x]. Here if f1 6= 0 and g1 6= 0, then f0g1 + f1g1+ f1g0 6= 0
since the degree of f1g1 is larger than one of f0g1 + f1g0. This induces a
contradiction because 0 6= f0g1 + f1g1 + f1g0 cannot be contained in C(R)[x].
Thus we have f1 = 0 or g1 = 0.

Suppose f1 = g1 = 0. Then f(x) = f0 + f2, g(x) = g0 + g2 ∈ C(R)[x], so
αβ ∈ C(R) for all α ∈ Cf(x) and β ∈ Cg(x).

Suppose f1 = 0 (i.e., f(x) = f0+ f2). Then f(x)g(x) = f0g1+h1 ∈ C(R)[x]
for some h1 ∈ C(R)[x], so f0g1 = 0. Thus f0 = 0 or g1 = 0. Consequently we
have that “f(x) = f0 + f2 (with f0 6= 0) and g(x) = g0 + g2” or “f(x) = f2
and g(x) = g0 + g1 + g2”. So αβ ∈ C(R) for all α ∈ Cf(x) and β ∈ Cg(x).

Suppose g1 = 0. Then we have similarly that αβ ∈ C(R) for all α ∈ Cf(x)

and β ∈ Cg(x).
Consequently, in any case, αβ ∈ C(R) for all α ∈ Cf(x) and β ∈ Cg(x). Thus

R is quasi-commutative.

The ring in Example 1.3(2) is a noncommutative non-reduced quasi-commu-
tative ring. But there can also exists many noncommutative non-reduced quasi-
commutative rings by help of Corollary 2.7 to follow.

One may hope division rings to be quasi-commutative, considering the quasi-
commutative domain R in Example 1.3. However the Hamilton quaternions H
over the real number field R is not quasi-commutative as can be seen by the
fact that (1 − ix)(1 + ix) = 1 + x2 ∈ C(H)[x] and i /∈ C(H) = R. Division
rings are clearly Armendariz, and there exists a commutative ring which is not
Armendariz by [12, Example 3.2]. Therefore the concepts of Armendariz and
quasi-commutativity are independent of each other.

Proposition 1.4. Let R be a quasi-commutative ring and suppose that f1(x),
f2(x), . . . , fn(x) are polynomials in R[x]. If f1(x)f2(x) · · · fn(x) ∈ C(R)[x],
then a1a2 · · ·an ∈ C(R) for all ai ∈ Cfi(x).

Proof. We apply the proof of [2, Proposition 1]. Suppose that

f1(x)f2(x) · · · fn(x) ∈ C(R)[x]

for f1(x), f2(x), . . . , fn(x) ∈ R[x]. We have f1(x)(f2(x) · · · fn(x)) ∈ C(R)[x],
so the quasi-commutativity of R implies a1b ∈ C(R) for any b ∈ Cf2(x)···fn(x).
This entails (a1f2(x))(f3(x) · · · fn(x)) ∈ C(R)[x]. Since a1a2 ∈ Ca1f2(x), the
quasi-commutativity of R implies a1a2c ∈ C(R) for any c ∈ Cf3(x)···fn(x).
This entails (a1a2f3(x))(f4(x) · · · fn(x)) ∈ C(R)[x]. Continuing, we obtain
inductively a1a2 · · ·an ∈ C(R). �

We next introduce a lemma which will make our approach to the nature of
quasi-commutative rings much easier.

Lemma 1.5. Let R be a quasi-commutative ring. Then we have the following.

(1) Let a ∈ R. If an ∈ C(R) for some n ≥ 1 then a ∈ C(R).
(2) N(R) ⊆ C(R).
(3) N(R) = N∗(R) = N∗(R) = N0(R).
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(4) Let a, b, c ∈ R and suppose ac ∈ C(R). If abnc ∈ C(R) for some n ≥ 1,
then abc ∈ C(R).

Proof. (1) For a ∈ R, suppose that an ∈ C(R) for some n ≥ 1. Then

(1 − ax)(1 + ax+ a2x2 + · · ·+ an−1xn−1) = 1− anxn ∈ C(R)[x].

Since R is quasi-commutative, we have a ∈ C(R).
(2) is an immediate consequences of (1).
(3) Let a ∈ N(R), say an = 0 for some n ≥ 1. Then a ∈ C(R) by (2), and so

we have (RaR)n = anR = 0. This implies a ∈ N0(R). Thus N(R) = N∗(R) =
N∗(R) = N0(R).

(4) Suppose that abnc ∈ C(R) for some n ≥ 1. Then a(1 − bx)(1 + bx +
· · · + bn−1xn−1)c = a(1 − bnxn)c = ac − abncxn ∈ C(R)[x]. Since R is quasi-
commutative, we have abc ∈ C(R) by Proposition 1.4. �

The Hamilton quaternions over any subring of the real number field cannot
be quasi-commutative by Lemma 1.5(1). If a ring R has a non-central self-
invertible unit, then R is not quasi-commutative by Lemma 1.5(1). A group
ring is not quasi-commutative by Lemma 1.5(1) if it is generated by a non-
Abelian group which has a self-invertible non-central element.

Proposition 1.6. Let R be a quasi-commutative ring. Then

J(R[x])=N0(R[x])=N∗(R[x])=N∗(R[x])=N0(R)[x]=N(R)[x]=N(R[x]),

and R[x]/J(R[x]) is a reduced ring.

Proof. Let R be a quasi-commutative ring. Then N0(R) = N∗(R) = N∗(R) =
N(R) by Lemma 1.5(3). This yields J(R[x]) ⊆ N∗(R)[x] by help of [1, Theorem
1], entailing J(R[x]) ⊆ N∗(R)[x]. But N∗(R)[x] = N∗(R[x]) by [1, Theorem 3],
and N∗(R[x]) ⊆ J(R[x]). Thus we have

J(R[x]) = N∗(R)[x] = N∗(R[x]) = N∗(R)[x] = N(R)[x] = N0(R)[x],

combining these results. Moreover N0(R)[x] = N0(R[x]) by [6, Corollary 4], so
we get the equality

J(R[x])= N∗(R)[x]= N∗(R[x])= N∗(R)[x]= N(R)[x]= N0(R)[x]= N0(R[x]).

Since N∗(R) = N(R) as above, N(R[x]) = N∗(R[x]) by [5, Proposition 2.6].
This implies that

R[x]

J(R[x])
=

R[x]

N∗(R[x])
=

R[x]

N(R[x])

is a reduced ring. �
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For a ring R and n ≥ 2, we consider the subring

Dn(R) =









































a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a















∈ Un(R) | a, aij ∈ R



























of the n by n upper triangular matrix ring Un(R). We next provide a basic
relation which combines the commutativity and the quasi-commutativity, via
the structure of D2(R).

Proposition 1.7. For a ring R, the following conditions are all equivalent:
(1) R is a commutative ring;
(2) D2(R) is a commutative ring;
(3) D2(R) is a quasi-commutative ring.

Proof. (1) ⇒ (2) and (2) ⇒ (3) are obvious.
(3)⇒ (1): Let E = D2(R) be a quasi-commutative ring. Then ( 0 R

0 0 ) ⊆ C(E)
by Lemma 1.5(2) since ( 0 R

0 0 ) ∈ N(E). This implies that for any r ∈ R,
(

0 rs
0 0

)

=

(

0 r
0 0

)(

s 0
0 s

)

=

(

s 0
0 s

)(

0 r
0 0

)

=

(

0 sr
0 0

)

for all s ∈ R. Thus we get rs = sr, concluding that R is a commutative
ring. �

Base on Proposition 1.7, one may ask whether Dn(R) is also quasi-commu-
tative for n ≥ 3. However the following erases the possibility.

Remark. Let A be any ring. Then R = Dn(A) is not a quasi-commutative
ring for all n ≥ 3. Note that e12 ∈ N(R), but e12 /∈ C(R). Thus R is not
quasi-commutative by Lemma 1.5(2). �

Following Bell [4], a ringR is said to satisfy the Insertion-of-Factors-Property
(simply, an IFP ring) if ab = 0 implies aRb = 0 for a, b ∈ R. Reduced rings are
clearly IFP by simple computation. It is also easily checked that IFP rings are
Abelian.

Recall that IFP rings need not be quasi-commutative. But we do not know
whether quasi-commutative rings are IFP.

Proposition 1.8. (1) Quasi-commutative rings are Abelian.

(2) Let R be a quasi-commutative ring. Then we have

(RaRbR)2 = 0 and (RbRaR)2 = 0

whenever ab = 0 for a, b ∈ R.

Proof. (1) Let R be a quasi-commutative ring. Assume on the contrary that
there exist e2 = e, r ∈ R such that er(1 − e) 6= 0. Let a = er(1 − e). Consider
f(x) = e + ax, g(x) = (1 − e)− ax, then f(x)g(x) = 0 ∈ C(R)[x]. Since R is
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quasi-commutative, ea = a ∈ C(R), and so 0 6= a = ea = ae = 0. This induces
a contradiction.

(2) Let R be a quasi-commutative ring and suppose that ab = 0 for a, b ∈ R.
Then bRa ⊆ N(R), and so bRa ⊆ C(R) by Lemma 1.5(2). This yields that

r1ar2br3ar4br5 = r1a(br3a)r2r4br5 = 0,

where ri’s are any elements in R. This implies (RaRbR)2 = 0. A similar
computation gives us (RbRaR)2 = 0. �

Proposition 1.8(1) may be proved in various ways as can be seen by the
equality of [e+(1−e)x][(1−e)+ex] = x. There exist many Abelian rings which
are not quasi-commutative by help of Lemma 1.5(2). For example, Hamilton
quaternions over any subring of the real number field, and Dn(R) over any
Abelian ring R for n ≥ 3 (refer to [8, Lemma 2]). So the converse of Proposition
1.8(1) is not true in general. The converse of Proposition 1.8(2) also need not
hold by the following.

Example 1.9. We use the ring and argument in [10, Example 2]. Let A =
Z2〈a0, a1, a2, b0, b1, b2, c〉 be the free algebra with noncommuting indetermi-
nates a0, a1, a2, b0, b1, b2, c over Z2, and B be the set of polynomials of zero
constant term in A.

Let I be the ideal of A generated by a0rb0, a0b1 + a1b0, a0b2 + a1b1 +
a2b0, a1b2+a2b1, a2rb2, (a0+a1+a2)r(b0+ b1+ b2), and r1r2r3r4, where r ∈ A
and r1, r2, r3, r4 ∈ B. Then clearly B4 ∈ I. Let R = A/I. We identify
a0, a1, a2, b0, b1, b2, c with their images in R for simplicity.

Then R is not quasi-commutative by Lemma 1.5(2) as can be seen by the
fact that a0 ∈ N(R) but a0b0 6= b0a0 (i.e., a0 /∈ C(R)).

Next let f(x)g(x) = 0 for 0 6= f(x), g(x) ∈ R[x]. Here we can express
f(x), g(x) by

f(x) = f0 + f1 and g(x) = g0 + g1

for f0, g0 ∈ Z2[x], f1, g1 ∈ B[x]. Then

f(x)g(x) = f0g0 + f0g1 + f1g1 + f1g0 = 0,

entailing that

f0g0 = 0 and f0g1 + f1g1 + f1g0 = 0.

So f0 = 0 or g0 = 0 from f0g0 = 0.
Assume f0 6= 0. Then g0 = 0; hence we have g1 6= 0 and f0g1 + f1g1 = 0.

Note that f1 6= 0 since f0g1 6= 0. The degree of the term of smallest degree in
f1g1 is larger than the degree of f0g1. This forces f0g1 = 0 and f1g1 = 0 since
f0g1 + f1g1 = 0. But since f0 6= 0, we have g1 = 0. This entails g(x) = 0,
a contradiction to g(x) 6= 0. Consequently f0 = 0. Similarly we get g0 = 0.
Therefore we now have f(x) = f1 and g(x) = g1. This also yields

(Rf(x)Rg(x)R)2, (Rg(x)Rf(x)R)2 ∈ (RBRBR)2[x].
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But (RBRBR)2 ⊆ B4 = 0, and so this implies (Rf(x)Rg(x)R)2 = 0 =
(Rg(x)Rf(x)R)2.

The preceding example also shows that the converse of Proposition 1.8(1)
need not hold. In fact, the ring R in Example 1.9 is IFP (hence Abelian) by
[10, Example 2], but R is not quasi-commutative.

Note. Suppose that R be a quasi-commutative ring of characteristic 2, and let
I = N(R). Let a+ I ∈ C(R/I) and r ∈ R. Then a2 ∈ C(R) and (ar)k = (ra)k

for some k ≥ 2.

Proof. Let a + I ∈ C(R/I) and r ∈ R. Then ar − ra ∈ I. By Lemma 1.5(2),
we get

a2r − ara = a(ar − ra) = (ar − ra)a = ara− ra2.

Since R is of characteristic 2, we have a2r = ra2. This implies a2 ∈ C(R). We
obtain similarly ar2 = r2a, using r(ar − ra) = (ar − ra)r.

Next since ar − ra ∈ N(R), (ar − ra)m = 0 for some m ≥ 1. We use freely
a2 ∈ C(R) and r2a = ar2 in the following computation.

(ar−ra)2 = arar−ar2a−ra2r+rara = arar−a2r2−a2r2+rara = (ar)2+(ra)2;

(ar − ra)4 = ((ar)2 + (ra)2)2 = (ar)4 + a4r4 + a4r4 + (ra)4 = (ar)4 + (ra)4;

· · · · · · · · ·

0 = (ar − ra)2m = (ar)2m + a2mr2m + a2mr2m + (ra)2m = (ar)2m + (ra)2m.

Letting now k = 2m, we get (ar)k = (ra)k. �

Following [10], a ring is called locally finite if every finite subset generates a
finite multiplicative semigroup. It is shown that a ring is locally finite if every
finite subset generates a finite subring by [9, Theorem 2.2(1)]. It is obvious
that the class of locally finite rings contains finite rings and algebraic closures
of finite fields.

Corollary 1.10. (1) Let R be a locally finite ring. Then R is quasi-commu-

tative if and only if R is commutative.

(2) Finite quasi-commutative rings are commutative.

Proof. It suffices to show the necessity. Let R be quasi-commutative and a ∈ R.
Since R is locally finite, an is an idempotent for some n ≥ 1 by the proof of
[10, Propostion 16]. But an ∈ C(R) by Proposition 1.8(1) since R is quasi-
commutative. This yields a ∈ C(R) by Lemma 1.5(1) also since R is quasi-
commutative. Thus R is commutative.

(2) is an immediate consequence of (1). �

We can see in the following a little different proof of Corollary 1.10(1) by
using Lemma 1.5(5). The idempotent an in the proof is central, we have 1an1 =
an ∈ C(R); hence a = 1a1 ∈ C(R) by Lemma 1.5(5).

We shall use the definition of quasi-commutative ring also for rings without
identity. One may conjecture that a ring R may be quasi-commutative when
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both R/I and I are quasi-commutative, where I is a proper ideal of R and is
quasi-commutative as a ring without identity. However the following erases the
possibility.

Example 1.11. Let K be a field. Let A = K〈a, b, c〉 be the free algebra
generated by the noncommuting indeterminates a, b, c over K. Set I be the
ideal of A generated by

ac− ca, bc− cb, c2

and R be the factor ring A/I. We identify a, b, c with their images in R/I. It
is easily checked that N(R) = Rc = cR = RcR = N0(R). Here we have

R

N0(R)
∼= K〈a, b〉.

SoR/N0(R) is quasi-commutative by Example 1.3. MoreoverN(R)2 = (Rc)2 =
Rc2 = 0, and so N(R) is a (quasi-)commutative ring.

But ac ∈ N(R) and bac 6= acb = abc, entailing ac /∈ C(R). Thus R is not
quasi-commutative by Lemma 1.5(2).

2. Examples of quasi-commutative rings

In this section we investigate the quasi-commutativity of various kinds of
ring extensions which have roles in ring theory. We first examine the quasi-
commutativity can pass to polynomial rings. We use deg(f(x)) to denote the
degree of a given polynomial f(x).

Proposition 2.1. A ring R is quasi-commutative if and only if so is R[x].

Proof. Let R be a quasi-commutative ring. Suppose that f(t)g(t) ∈ C(R[x])[t]
for 0 6= f(t) =

∑m

i=0 fi(x)t
i, g(t) =

∑n

j=0 gj(x)t
j ∈ R[x][t], where R[x][t]

is the polynomial ring with an indeterminate t over R[x]. Next let fi(x) =
ai0 + ai1x + · · · + aiwx

iw and gj(x) = bj0 + bj1x + · · ·+ bjvx
jv for all i and j,

where ai0 , . . . , aiw , bj0 , . . . , bjv ∈ R.
Note C(R[x][t]) = C(R[x])[t] = C(R)[x][t]. So f(t)g(t) ∈ C(R)[x][t].
We apply the proof of [2, Theorem 2] to show thatR[x] is quasi-commutative.

Let k =
∑m

i=0 deg(fi(x)) +
∑n

j=0 deg(gj(x)), where the degree is considered as

polynomials in R[x] and the degree of zero polynomial is taken to be 0. Set

F (x) = f(xk) =
m
∑

i=0

fi(x)(x
k)i and G(x) = g(xk) =

n
∑

j=0

gj(x)(x
k)j ∈ R[x].

Then the set of all coefficients of fi’s (resp., gj ’s) equals the set of all coefficients
of F (x) (resp., G(x)). Thus we have

F (x)G(x) ∈ C(R)[x]

from f(t)g(t) ∈ C(R)[x][t].
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Since R is quasi-commutative, ab ∈ C(R) for all a ∈ CF (x), b ∈ CG(x). This
yields fi(x)gj(x) ∈ C(R[x]), recalling C(R[x]) = C(R)[x]. Therefore R[x] is
quasi-commutative.

For the proof of the converse, let f(x)g(x) ∈ C(R)[x] for f(x) =
∑m

i=0 aix
i,

g(x) =
∑n

j=0 bjx
j ∈ R[x]. Then we can write f(t)g(t) ∈ C(R[x])[t] for f(t) =

∑m

i=0 ait
i, g(t) =

∑n

j=0 bjt
j ∈ R[t] ⊂ R[x][t], noting that C(R[x]) = C(R)[x]

and C(R[x])[t] = C(R)[x][t].
Here if R[x] is quasi-commutative, then aibj ∈ C(R[x]) for all i, j. But since

C(R[x]) = C(R)[x], we have aibj ∈ C(R). Thus R is quasi-commutative. �

Let X denote a set of commuting indeterminates over a given ring R, and
use R[X ] to denote the polynomial ring with indeterminates X over R. We
extend Proposition 2.1 to the case of |X | ≥ 2 as follows. It is also checked
easily that C(R[X ]) = C(R)[X ].

Corollary 2.2. Let R be a ring and X be a set of commuting indeterminates

over R. Suppose |X | ≥ 2. Then R is quasi-commutative if and only if so is

R[X ].

Proof. Let R be a quasi-commutative ring, and suppose that

f(t)g(t) ∈ C(R[X ])[t]

for 0 6= f(t), g(t) ∈ R[X ][t], where R[X ][t] is the polynomial ring with an
indeterminate t over R[X ]. Then there exists a finite subset X0 of X such
that f(t), g(t) ∈ R[X0][t]. But R[X0] is quasi-commutative by Proposition
2.1, iterating this if necessary. This result induces that R[X ] is also quasi-
commutative, noting that C(R[X0]) = C(R)[X0] ⊆ C(R)[X ] = C(R[X ]).

The converse can be proved by applying the proof of Proposition 2.1. �

Recall that an element u of a ring R is right regular if ur = 0 implies r = 0
for r ∈ R. The left regular can be defined similarly. An element is regular if it
is both left and right regular (i.e., not a zero divisor).

Proposition 2.3. Let R be a ring and M be a multiplicatively closed subset of

R consisting of central regular elements. Then R is quasi-commutative if and

only if so is M−1R.

Proof. Write E = M−1R. First note M−1C(R) ⊆ C(E). Let a−1b ∈ C(E).
Then a−1br = ra−1b = a−1rb for all r ∈ R, entailing br = rb. This implies
b ∈ C(R), and thus C(E) ⊆ M−1C(R). Consequently C(E) = M−1C(R). We
will use this fact freely.

Suppose that R is quasi-commutative. Let F (x) =
∑m

i=0 αix
i and G(x) =

∑n

j=0 βjx
j be in E[x] such that F (x)G(x) ∈ C(E)[x], where αi = u−1ai,

βj = v−1bj with ai, bj ∈ R for all i, j and regular u, v ∈ R. But F (x)G(x) =
u−1(a0 + a1x + · · · + amxm)v−1(b0 + b1x + · · · + bnx

n) = (uv)−1(a0 + a1x +
· · ·+ amxm)(b0 + b1x+ · · ·+ bnx

n).
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Here let f(x) = a0 + a1x + · · · + amxm and g(x) = b0 + b1x + · · · + bnx
n.

Then f(x) and g(x) are in R[x]. Moreover f(x)g(x) ∈ C(R)[x] since

F (x)G(x) ∈ C(E)[x] and C(E)[x] = (M−1C(R))[x].

Since R is quasi-commutative, aibj ∈ C(R) for all i, j. This entails αβ =
u−1aiv

−1bj = u−1v−1aibj ∈ M 1C(R) = C(E). Thus E is quasi-commutative.
Suppose that E is quasi-commutative. Let f(x)g(x) ∈ C(R)[x] for f(x), g(x)

∈ R[x]. Then f(x)g(x) ∈ (M−1C(R))[x] = C(E)[x]. Since E is quasi-
commutative, ab ∈ C(E) for all a ∈ Cf(x) and b ∈ Cg(x). Thus ab ∈ C(R)
since C(R) = R ∩C(E), and so R is quasi-commutative. �

Let R be a ring. Recall that the ring of Laurent polynomials, in an indeter-
minate x over R, consists of all formal sums

∑n

i=k aix
i with obvious addition

and multiplication, where ai ∈ R and k, n are (possibly negative) integers with
k ≤ n. We denote this ring by R[x;x−1].

Corollary 2.4. Let R be a ring. Then R is quasi-commutative if and only if

R[x] is quasi-commutative if and only if R[x;x−1] is quasi-commutative.

Proof. The first equivalence is Proposition 2.1. The second one is an immediate
consequence of Proposition 2.3, noting that R[x;x−1] = M−1R[x] if M =
{1, x, x2, . . .}. �

We use ⊕ to denote the direct sum. Let A be an algebra (with or without
identity) over a commutative ring K. Due to Dorroh [7], the Dorroh extension

of A by K, written by A⊕DK, is the Abelian group A⊕K with multiplication
given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2) for ri ∈ A and si ∈ K.
Note that (A⊕DK)[x] is isomorphic to A[x]⊕DK[x] through

∑m

i=0(ai, hi)x
i 7→

(
∑m

i=0 aix
i,
∑m

i=0 hix
i), so we treat here these two rings without discrimination.

Proposition 2.5. Let A be a free algebra generated by a set X of noncom-

muting indeterminates over a commutative domain K, where |X | ≥ 2. Let B
be the subalgebra of all polynomials of zero constant in A. Then the Dorroh

extension of B by K is quasi-commutative.

Proof. Let R be the Dorroh extension of B by K. Clearly 0⊕K ⊆ C(R). Let
(b, k) ∈ C(R). Then (ba + ka, 0) = (b, k)(a, 0) = (a, 0)(b, k) = (ab + ka, 0) for
all a ∈ B, forcing ab = ba. This yields b = 0 since every nonzero element of B
is non-central in B, entailing C(R) = 0⊕K. So

C(R[x]) = C(R)[x] = (0⊕K)[x] = 0⊕K[x].

We will use this fact freely.
Suppose that 0 6= f(x) =

∑m

i=0(ai, hi)x
i and 0 6= g(x) =

∑n

j=0(bj , kj)x
j ∈

R[x] satisfy f(x)g(x) ∈ C(R)[x]. Here f(x), g(x) can be expressed by

f(x) = (f0, f1) and g(x) = (g0, g1)
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for f0 =
∑m

i=0 aix
i, g0 =

∑n

j=0 bjx
j ∈ B[x], f1 =

∑m

i=0 hix
i, and g1 =

∑n

j=0 kjx
j ∈ K[x]. Then

f(x)g(x) = (f0g0 + g1f0 + f1g0, f1g1) ∈ C(R)[x],

entailing

f0g0 + g1f0 + f1g0 = 0.

Here if f0 6= 0 and g0 6= 0, then f0g0 + g1f0 + f1g0 6= 0 since the degree of f0g0
is larger than one of g1f0 + f1g0. This induces a contradiction. Thus we have
f0 = 0 or g0 = 0.

If f0 = 0 (i.e., 0 6= f(x) = f1), then f(x)g(x) = (f1g0, f1g1) ∈ C(R)[x].
This forces f1g0 = 0, and hence g0 = 0 since f1 6= 0. So f(x) = (0, f1) and
g(x) = (0, g1). The same result is obtained when g0 = 0.

Consequently (0, hi)(0, kj) = (0, hikj) ∈ 0⊕K(= C(R)) for all i and j, and
therefore R is quasi-commutative. �

Use
∏

to denote the direct product of rings.

Proposition 2.6. Let Ri be rings for i ∈ I and R =
∏

i∈I Ri, where I is

an index set. Then Ri is quasi-commutative for all i ∈ I if and only if R is

quasi-commutative.

Proof. It is easily shown that C(R) =
∏

i∈I C(Ri). We will use this freely
in the proof. Suppose that Ri is quasi-commutative for all i ∈ I, and let
F (x)G(x) ∈ C(R)[x] for F (x) =

∑m

s=0(a(s)i)x
s, G(x) =

∑n

t=0(b(t)i)x
t ∈ R[x].

F (x) andG(x) can be rewritten by F (x) = (f(x)i)i∈I andG(x) = (g(x)i)i∈I ,
where f(x)i =

∑m

s=0 a(s)ix
s and g(x)i =

∑n

t=0 b(t)ix
t. So we have

F (x)G(x) = (f(x)i)(g(x)i) = (h(x)i),

where h(x)i = f(x)ig(x)i for all i ∈ I. But since F (x)G(x) ∈ C(R)[x] and
C(R)[x] = (

∏

i∈I C(Ri))[x] =
∏

i∈I(C(Ri)[x]) = C(R[x]), we get f(x)ig(x)i ∈
C(Ri)[x] for all i ∈ I.

Now since every Ri is quasi-commutative, we have a(s)ib(t)i ∈ C(Ri) for all
i ∈ I. This implies (a(s)i)(b(t)i) ∈ C(R), and so R is quasi-commutative.

Conversely assume thatR is quasi-commutative, and let f(x)g(x) ∈ C(Ri)[x]
for f(x) =

∑m

u=0 cux
u, g(x) =

∑n

v=0 dvx
v ∈ Ri[x]. Consider sequences (a(u)i),

(b(v)i) ∈ R for all u, v such that a(u)i = cu, b(v)i = dv, and a(u)j = 0 = b(v)j
for all j 6= i. Next set

F (x) = (f(x)i) =

m
∑

u=0

(a(u)i)x
u and G(x) = (g(x)i) =

n
∑

v=0

(b(v)i)x
v

such that

f(x)i =

m
∑

u=0

a(u)ix
u and g(x)i =

n
∑

v=0

b(v)ix
v.
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Note f(x)j = 0 = g(x)j for all j 6= i. Now we have F (x)G(x) ∈ C(R)[x]. Since
R is quasi-commutative, (a(u)ib(v)i) = (a(u)i)(b(v)i) ∈ C(R) for all i ∈ I.
This entails cudv ∈ C(Ri) for all u, v. Thus Ri is quasi-commutative. �

We see next an application of Proposition 2.6.

Corollary 2.7. (1) There exist noncommutative non-reduced quasi-commu-

tative rings.

(2) Let R be a ring and e2 = e ∈ C(R). Then R is quasi-commutative if and

only if both eR and (1 − e)R are quasi-commutative.

Proof. (1) Let R1 be a noncommutative quasi-commutative ring as in Exam-
ple 1.3, and R2 be a non-reduced commutative ring. Then the direct product
∏2

i=1 Ri is a noncommutative non-reduced quasi-commutative ring by Propo-
sition 2.6.

(2) is an immediate consequence of Proposition 2.6, considering R = eR ⊕
(1− e)R. �
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