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SMOOTH HOROSPHERICAL VARIETIES OF PICARD

NUMBER ONE AS LINEAR SECTIONS OF RATIONAL

HOMOGENEOUS VARIETIES

Jaehyun Hong

Abstract. We construct projective embeddings of horospherical vari-
eties of Picard number one by means of Fano varieties of cones over ra-
tional homogeneous varieties. Then we use them to give embeddings of
smooth horospherical varieties of Picard number one as linear sections of
rational homogeneous varieties.

1. Introduction

Let G be a connected reductive algebraic group over C and let H be a closed
subgroup of G. A homogeneous space G/H is said to be horospherical if H
contains the unipotent radical of a Borel subgroup of G, or equivalently, G/H
is isomorphic to a torus bundle over a rational homogeneous variety G/P . A
normal G-variety is called horospherical if it contains an open dense G-orbit
isomorphic to a horospherical homogeneous space G/H . Toric varieties and
rational homogeneous varieties are horospherical. The cone over a rational
homogeneous variety G/P is horospherical because it has an open G-orbit
isomorphic to a C

×-bundle over G/P .
As can be seen from the latter example, horospherical varieties are not nec-

essarily smooth and it is not easy to classify all smooth horospherical varieties.
If we assume that the Picard number is one, such varieties are classified.

Theorem 1.1 (Theorem 0.1 and Theorem 1.7 of Pasquier [8]). Let G be a

connected reductive algebraic group. Let X be a smooth projective horospherical

G-variety of Picard number one. Then X is either homogeneous or one of the

following.

(1) (Bn, ̟n−1, ̟n), n ≥ 3;
(2) (B3, ̟1, ̟3);
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(3) (Cn, ̟i+1, ̟i), n ≥ 2 and i ∈ {1, 2, . . . , n− 1};
(4) (F4, ̟2, ̟3);
(5) (G2, ̟2, ̟1).

For the notations see Section 2.

Some of the above-mentioned varieties can be embedded into rational ho-
mogeneous varieties as linear sections. For example, the horospherical varieties
(Cn, ̟i+1, ̟i) are also known as odd symplectic Grassmannians. They are
linear sections of symplectic Grassmannians (Mihai [7]). Pasquier [8] asked
whether the smooth horospherical varieties listed in Theorem 1.1 can be em-
bedded as linear sections into rational homogeneous varieties as in the case of
(Cn, ̟i+1, ̟i). In this paper, we investigate this problem.

First, we give geometric descriptions of the horospherical varieties listed in
Theorem 1.1. For example, we prove the following results.

Proposition 5.2 Let Sn be the rational homogeneous variety (Dn+1, ̟n+1).

(1) The horospherical variety (Bn, ̟n−1, ̟n) is a linear section of the

horospherical variety (Dn+1, ̟n−1, ̟n+1).

(2) The Fano variety F1(̂Sn) of lines in the cone ̂Sn over Sn is isomorphic

to the horospherical variety (Dn+1, ̟n−1, ̟n+1).

Proposition 5.3 Let S be the rational homogeneous variety (E6, ̟6).

(1) The horospherical variety (F4, ̟2, ̟3) is a linear section of the horo-

spherical variety (E6, ̟4, ̟5).

(2) The Fano variety F2(̂S) of planes in the cone ̂S over S is isomorphic

to the horospherical variety (E6, ̟4, ̟5).

Using these descriptions we show that:

Theorem 1.2. A smooth horospherical variety X of Picard number one can

be embedded as a linear section into a rational homogenous variety S of Picard

number one except when X is (Bn, ̟n−1, ̟n) for n ≥ 7.

For an explicit description of an embedding of X into S, see Proposition 5.1
and its proof.

In the case of (Bn, ̟n−1, ̟n) for n ≥ 7, it is still open whether we can
embed it into a rational homogeneous variety as a linear section. The reason
why we cannot apply our method to the horospherical variety (Bn, ̟n−1, ̟n)
for n ≥ 7, is that there does not exist a rational homogeneous variety S whose
variety Cx(S) of minimal rational tangents at x ∈ S is isomorphic to the rational
homogeneous variety (Dn+1, ̟n+1) for n ≥ 7. Even though this does not imply
that the horospherical variety (Bn, ̟n−1, ̟n) for n ≥ 7 cannot be embedded
as a linear section into a rational homogeneous variety of Picard number one,
we expect it cannot be.

It would be interesting to investigate the Fano varieties Fk(̂S) of the cones
̂S over rational homogeneous varieties S from the viewpoint of horospherical
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varieties, which we expect to be useful for understanding horospherical vari-
eties geometrically as in the case of rational homogeneous varieties (Landsberg-
Manivel [6]).

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the notations used in subsequent sections, and we review and prove some
properties of horospherical varieties. In Section 3, we consider a way to embed
the cone over a rational homogenous variety into another rational homogeneous
variety as a linear section (Proposition 3.5). We review the results on Fano va-
rieties of rational homogeneous varieties in Section 4. In Section 5, we describe
each horospherical variety listed in Theorem 1.1 as a linear section of the Fano
variety of the cone over a rational homogenous manifold (Proposition 5.2 and
Proposition 5.3), and we employ the results obtained in Section 3 to complete
the proof of Theorem 1.2 (Proposition 5.1).

2. Horospherical varieties

Let G be a connected reductive algebraic group over C. For a dominant
weight ̟, let VG(̟) denote the irreducible representation space of G with the
highest weight ̟. Fix a Borel subgroup of G. Let {̟1, . . . , ̟n} be the system
of fundamental weights of G. Take a highest weight vector vi in VG(̟i) for
i = 1, . . . , n. Then the G-orbit of [vi] in P(VG(̟i)) is a rational homogeneous
variety. We denote it by (G,̟i). The isotropy group Pi of G at [vi] is called
the parabolic subgroup associated with ̟i. More generally, the G-orbit of
[vi1 ⊗· · ·⊗vik ] in P(VG(̟i1)⊗· · ·⊗VG(̟ik)) is a rational homogeneous variety,
which is denoted by (G, {̟i1 , . . . , ̟ik}).

Let H be a closed subgroup of G. A homogeneous space G/H is said to be
horospherical if H contains the unipotent radical of a Borel subgroup of G. In
this case, the normalizer NG(H) of H in G is a parabolic subgroup P of G and
P/H is a torus (C×)r. Thus G/H has a structure of (C×)r-bundle over G/P .
A normal G-variety is called horospherical if it contains an open dense G-orbit
isomorphic to a horospherical homogeneous space G/H .

Proposition 2.1. For any i 6= j, the closure of the G-orbit of [vi + vj ] in
P(VG(̟i)⊕ VG(̟j)) is a horospherical G-variety.

Proof. The isotropy group H of G at [vi + vj ] contains the unipotent radical
U of the Borel subgroup B of G and thus the homogeneous space G.[vi + vj ] is
horospherical. It suffices to show that the closureX of G.[vi+vj ] in P(VG(̟i)⊕
VG(̟j)) is a normal variety.

The normalizer P ofH in G is the parabolic subgroup Pi∩Pj and P/H is the
one-dimensional torus C× := C\{0}. The P/H-orbit of [vi + vj ] is isomorphic
to C

× and the G-orbit of [vi + vj ] is isomorphic to the C
×-bundle G ×P C

×

over G/P .
The closure of the P/H-orbit of [vi+vj ] is a line P1 in P(VG(̟i)⊕VG(̟j)).

The line P1 has three P/H-orbits: one open orbit C× = P/H.[vi+vj ], and two
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fixed points [vi] and [vj ]. Let X ′ be the fiber bundle G ×P P
1 over G/P with

fiber P1. Define a map

f : X ′ = G×P P
1 → X

by f(g, x) = gx for g ∈ G and x ∈ P
1. Then f is a birational morphism

and is restricted to an isomorphism of G ×P C
× onto G.[vi + vj ]. The image

X = f(X ′) of f is normal because the fibers of X ′ = G ×P P
1 → G/P are

normal (Proposition 1 of [5]). Hence,X is normal, and thus, it is a horospherical
G-variety. �

We will denote the closure of G.[vi+vj ] in P(VG(̟i)⊕VG(̟j)) by (G,̟i, ̟j).
1

It has threeG-orbits: one open orbitG.[vi+vj ] and two closed orbits, G.[vi] and
G.[vj ]. The horospherical variety (G,̟i, ̟j) is smooth if and only if Pj .[vi] and
Pi.[vj ] are linear ([8]). By showing that any non-linear smooth horospherical
variety of Picard number one is of the form (G,̟i, ̟j), Pasquier obtained the
classification described in Theorem 1.1.

We end this section by giving a characterization of (G,̟i, ̟j) by means of
the structure of G-orbits.

For a dominant weight ̟ of G, let v̟ be a highest weight vector of VG(̟)
and let P̟ be the isotropy group of G at [v̟] ∈ P(VG(̟)). For two distinct
dominant weights̟′, ̟′′ of G, let (G,̟′, ̟′′) denote the closure of the G-orbit
of [v̟′ ⊕ v̟′′ ] in P(VG(̟

′) ⊕ VG(̟
′′)). Then the isotropy group H of G at

[v̟′ ⊕ v̟′′ ] ∈ P(VG(̟
′)⊕VG(̟

′′)) is the kernel of ̟′−̟′′ : P̟′ ∩P̟′′ → C
×,

and the normalizer P of H in G is P̟′ ∩P̟′′ . By the same arguments as those
in the proof of Proposition 2.1, (G,̟′, ̟′′) is a horospherical G-variety, and it
has three G-orbits: one open orbit G.[v̟′ ⊕v̟′′ ], and two closed orbits G.[v̟′ ]
and G.[v̟′′ ].

For example, (G, 2̟i, ̟i+̟j) is also a projective embedding of G/H , where
G/H is the open G-orbit in (G,̟i, ̟j). Moreover, (G, 2̟i, ̟i + ̟j) is the
closure of the G-orbit of [(vi◦vi)⊕(vi⊗vj)] in P(S2(V (̟i))⊕(V (̟i)⊗V (̟j))),
and [(vi ◦ vi)⊕ (vi⊗ vj)] is [vi⊗ (vi⊕ vj)] as an element in P(V (̟i)⊗ (V (̟i)⊕
V (̟j)). Define

τ : (G, 2̟i, ̟i +̟j) → P(V (̟i)⊕ V (̟j)) by

g[vi ⊗ (vi ⊕ vj)] 7→ g[vi ⊕ vj ],

where g ∈ G. Then, the image of τ is (G,̟i, ̟j).
Similarly, we get two more projective embeddings of G/H .

Proposition 2.2. For i 6= j, let H be the isotropy group of G at [vi ⊕ vj ] ∈
P(VG(̟i)⊕VG(̟j)). Then, there are exactly 4 projective embeddings of G/H,

1In [8] (G,̟i,̟j) is the notation for the unique smooth horospherical variety of Picard
number one such that the isotropy group at a generic point is given by the kernel of ̟i−̟j :

Pi ∩ Pj → C
×. Afterwards, it is realized as a projective variety, the closure of the G-orbit

of [vi ⊕ vj ] in P(V (̟i) ⊕ P(̟j)). In this paper we adopt the latter as the definition of

(G,̟i,̟j) regardless of its smoothness.
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(G,̟i, ̟j), (G,̟i+̟j , 2̟j), (G, 2̟i, ̟i+̟j), and (G, 2̟i+̟j , ̟i+2̟j),
and we have the following commutative diagram:

(G, 2̟i +̟j , ̟i + 2̟j)

σ2

tt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥ τ2

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

(G,̟i +̟j, 2̟j)

σ1 **❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

(G, 2̟i, ̟i +̟j)

τ1tt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥

(G,̟i, ̟j)

Proof. The horospherical homogeneous space G.[vi + vj ] = G/H is of rank
one and has two colors. Thus, the classification of G/H-embeddings in terms
of colored fans tells us that it has exactly 4 projective embeddings and that
they are determined by the set of colors (See Section 1.3 of [8]). (G,̟i, ̟j)
has two colors, (G,̟i + ̟j , 2̟j) and (G, 2̟i, ̟i + ̟j) have one color, and
(G, 2̟i +̟j, ̟i + 2̟j) has no color. �

By Proposition 2.2, we can distinguish 4 projective embeddings of G/H by
the types of their closed orbits. In particular, the following three properties
uniquely determine (G,̟i, ̟j).

Corollary 2.3. Let X be a normal G-variety. Assume the following properties.

(1) There are three G-orbits in X : one open orbit and two closed orbits.

(2) The open orbit is isomorphic to a C
×-bundle over (G, {̟i, ̟j}).

(3) One closed orbit is isomorphic to (G,̟i) and the other closed orbit is

isomorphic to (G,̟j).

Then X is the horospherical variety (G,̟i, ̟j).

3. Cones over rational homogeneous varieties

Let X ⊂ P(V ) be a projective variety. By a linear space in X we mean a
(projective) linear space P

k in P(V ) contained in X . We call a linear space
of dimension one (two, respectively) a line (a plane, respectively). Let Fk(X)
denote the Fano variety of Pk’s in X .

Proposition 3.1. Let X ⊂ P(V ) be a projective variety and let Z be a linear

section of X. Then the Fano variety Fk(Z) is also a linear section of Fk(X).

Proof. Suppose that Z is the intersection X ∩ P(W ) for some linear space
P(W ) in P(V ). Then P(∧k+1W ) is a linear space in P(∧k+1V ) and Fk(Z) is
the intersection Fk(X) ∩ P(∧k+1W ). �

Proposition 3.2. Let X ⊂ P(V ) be a projective variety. Let ̂X be the cone

over X with vertex a point x0. For a line L in X, let ̂L denote the cone over

L with vertex x0. Then, ̂L is a plane in ̂X. Furthermore, any line in ̂X is

contained in ̂L for some line L in X.
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In general, any linear space in ̂X is contained in the cone over a linear space

in X with vertex x0.

Proposition 3.3. Let G be a connected reductive algebraic group. Let V̟ be

an irreducible representation space of G and let v̟ be a highest weight vector of

V̟. Let P denote the isotropy group of G at [v̟] ∈ P(V̟). Let V0 be the one-

dimensional trivial representation space of G and let v0 be a non-zero vector in

V0. Then, the closure ̂S of the G-orbit G.[v̟ ⊕ v0] in P(V̟ ⊕ V0) is the cone

over the rational homogeneous variety S = G/P , and it is horospherical.

Proof. Consider the map π : G.[v̟ ⊕ v0] → P(V̟) defined by g.[v̟ ⊕ v0] 7→
g.[v̟], where g ∈ G. Then, the image of π is the rational homogeneous variety
S = G/P embedded in P(V̟), and the fiber over the base point [v̟] of S
consists of [v̟ ⊕ cv0], where c ∈ C

×. Thus, the G-orbit G.[v̟ ⊕ v0] is horo-

spherical. The closure ̂S of G.[v̟ ⊕ v0] contains two more G-orbits: G.[v̟ ⊕ 0]
and G.[0 ⊕ v0]. The former is S = G/P and the latter is the point [0 ⊕ v0].

Then, ̂S is the cone over S with vertex [0⊕ v0]. �

We will retain the same notations and embeddings of Proposition 3.3 when-

ever we mention the cone ̂S over the rational homogeneous variety S = G/P .
The cone over a rational homogeneous variety appears naturally as a linear sec-
tion of another rational homogeneous variety. For clarity, we first recall several
definitions.

Let X ⊂ P(V ) be a projective variety and let x ∈ X . The projective tangent

space TxX at x ∈ X is the projectivization of the Zariski tangent space ˜Tx̃X̃ ⊂
V of the affine cone X̃ ⊂ V of X at a point x̃ with [x̃] = x. The projective
tangent space TxX is a linear space in P(V ). The Zariski tangent space TxX

can be identified with (˜Tx̃X̃/Cx̃) ⊗ (Cx̃)∗. The projectivized tangent space

P(TxX) is the projectivization of the Zariski tangent space TxX .
WhenX is uniruled by lines inX , the variety Cx(X) of minimal rational tan-

gents of X at a smooth point x ∈ X is, by definition, the subvariety of P(TxX)
consisting of tangent directions to lines in X passing through x (Hwang-Mok
[2], [3], [4]).

Proposition 3.4. Let S = G/P ⊂ P(V (̟i)) be the rational homogeneous

variety (G,̟i). Let x be the base point [v̟i
]. Then, the intersection TxS ∩ S

of S with the projective tangent space TxS of S is the cone over the variety of

minimal rational tangents Cx(S) with vertex x.

Proof. We will repeat the arguments presented in Section 2.1 of Landsberg-
Manivel [6]. Since the ideal of S is generated in degree two, any line L osculating
to order two at x is contained in S. Hence, if y ∈ TxS ∩ S and y 6= x, then
the line passing through x and y is contained in S. Therefore, the intersection
TxS ∩ S, of S with the projective tangent space TxS of S, is the locus of lines
in S passing through x. Now, the locus of lines in S passing through x is the
cone over Cx(S) with vertex x. �
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Proposition 3.5. Let S = G/P ⊂ P(V̟i
) be a rational homogeneous variety

(G,̟i). Let x be the base point [v̟i
] and let L denote the reductive part of P .

Let S be a linear section of Cx(S) by a linear space invariant under the action

of a reductive subgroup G of L. Then there is a G-equivariant embedding of the

cone ̂S over S as a linear section, into S.

In this case the Fano variety Fk(̂S) is also a linear section of Fk(S).

Proof. The first statement follows from Proposition 3.4. The second statement
follows from Proposition 3.1. �

Now, our strategy is

(I) to describe the horospherical variety X listed in Theorem 1.1 as (a

linear section of) Fk(̂S) for some G-homogeneous variety S,
(II) and to find a G-equivariant embedding of S as a linear section into

Cx(S) for some rational homogeneous variety S.

Then, we can embed X as a linear section into S = Fk(S) by Proposition 3.5.

4. Fano varieties of rational homogeneous varieties

To achieve our goal, more precisely, (I) and (II) at the end of Section 3, we
will use the results on varieties of minimal rational tangents or Fano varieties
of rational homogeneous varieties, obtained by Hwang and Mok [2], [3], [4] and
Landsberg-Manivel [6].

In the following, we identify the fundamental weights of G with the nodes
of the Dynkin diagram of G.

Proposition 4.1 (Hwang and Mok [2], [3], [4] and Landsberg-Manivel [6]).
Let S = G/P ⊂ P(V̟i

) be a rational homogeneous variety (G,̟i). Let x be

the base point [v̟i
] and let L denote the reductive part of P . Then, Cx(S) has

at most two orbits under the action of P , and Cx(S) has two P -orbits if and

only if ̟i is associated to a short root.

Furthermore, the closed P -orbit in Cx(S) is the rational homogeneous variety

(Lss, N(̟i)) and is a linear section of Cx(S), where Lss is the semisimple part

of L and N(̟i) is the set of nodes connected to ̟i by an edge in the Dynkin

diagram of G.

We remark that the Dynkin diagram of Lss is obtained by deleting ̟i in
the Dynkin diagram of G.

Proposition 4.2 (Landsberg-Manivel [6]). Let S = G/P ⊂ P(V̟i
) be a ratio-

nal homogeneous variety (G,̟i). Then, F1(S) has at most two orbits under

the action of G, and F1(S) has two G-orbits if and only if ̟i is associated to

a short root.

Furthermore, the closed G-orbit in F1(S) is the rational homogeneous variety

(G,N(̟i)) and is a linear section of F1(S), where N(̟i) is the set of nodes

connected to ̟i by an edge in the Dynkin diagram of G.
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In general, Fk(S) can be described using subdiagrams of type (Ak, ̟1), of
the marked Dynkin diagram (G,̟i). We call such a subdiagram a chain of

length k. For a chain A, N(A) is defined by the set of nodes connected to A
by an edge in the Dynkin diagram of G.

Proposition 4.3 (Landsberg-Manivel [6]). Let S = G/P ⊂ P(V̟i
) be a ratio-

nal homogeneous variety (G,̟i).

(1) If ̟i is not associated to a short root, then Fk(S) is the disjoint union

of rational homogeneous varieties (G,N(A)), where A is a chain of

length k.
(2) If ̟i is associated to a short root, then Fk(S) has (G,N(A)) as linear

sections, where A is a chain of length k.

We will apply Proposition 4.2 and Proposition 4.3 to S = (G,̟i) where ̟i

is an end of the Dynkin diagram of G. A node of the Dynkin diagram of G is
called an end if it is connected to only one other node. For an end ̟, a branch

of ̟ is a series of nodes

̟(r), . . . , ̟(1), ̟

that satisfy:

(1) Each ̟(i) (i = 1, . . . , r − 1) is connected only to ̟(i−1) and ̟(i+1).
(2) The subdiagram of the Dynkin diagram of G with nodes ̟(r), . . . , ̟(1),

̟ is either of type Ar+1 or of type Cr+1.
(3) The series ̟(r), . . . , ̟(1), ̟ is maximal with respect to properties (1)

and (2).

Example. (1) The Dynkin diagram of Bn has two ends: ̟1 and ̟n. The
branch of ̟1 is ̟n−1, . . . , ̟2, ̟1 and the branch of ̟n is ̟n−1, ̟n.

(2) The Dynkin diagram of F4 has two ends: ̟1 and ̟4. The branch of
̟1 is ̟2, ̟1 and the branch of ̟4 is ̟2, ̟3, ̟4.

(3) The Dynkin diagram of G2 has two ends: ̟1 and ̟2. The branch of
̟1 is ̟1 and the branch of ̟2 is ̟2.

For the index of fundamental weights, we follow the conventions in [1].

Proposition 4.4. Let S ⊂ P(V̟) be a rational homogeneous variety (G,̟).
Assume that ̟ is an end of the Dynkin diagram of G. Let ̟(r), . . . , ̟(1), ̟
be the branch of ̟ and let r ≥ k ≥ 1.

(1) If ̟ is not associated to a short simple root, then Fk(S) is the rational

homogeneous variety (G,̟(k)).
(2) If ̟ is associated to a short simple root, then Fk(S) has the rational

homogeneous variety (G,̟(k)) as a linear section.

Proof. It follows from Proposition 4.2 and Proposition 4.3. �
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5. Embeddings as linear sections

In this section we will show that there is an embedding of the horospherical
variety X into the rational homogeneous variety S for the following pairs.

Proposition 5.1. For the following pair (X,S) of a smooth horospherical va-

riety X of Picard number one and a rational homogeneous variety S of Picard

number one, X can be embedded as a linear section into S:

(1) X = (B3, ̟2, ̟3) and S = (F4, ̟3) or S = (D5, ̟2);
(2) X = (B4, ̟3, ̟4) and S = (E6, ̟3);
(3) X = (B5, ̟4, ̟5) and S = (E7, ̟3);
(4) X = (B6, ̟5, ̟6) and S = (E8, ̟3);
(5) X = (F4, ̟2, ̟3) and S = (E7, ̟5);
(6) X = (C2, ̟2, ̟1) and S = (C3, ̟2) or S = (F4, ̟3);
(7) X = (Cn, ̟i+1, ̟i), n ≥ 3 and 1 ≤ i ≤ n− 1 and S = (Cn+1, ̟i+1);
(8) X = (G2, ̟2, ̟1) and S = (B4, ̟2);
(9) X = (B3, ̟1, ̟3) and S = (B4, ̟4) = (D5, ̟5).

For the index of fundamental weights, we follow the conventions in [1].

For example, we will show that there are embeddings (Fig. 1).

(3) (B5, ̟4, ̟5)
Prop. 5.2
−→ (D6, ̟4, ̟6)

Prop. 5.4 et al.
−→ (E7, ̟3).

(5) (F4, ̟2, ̟3)
Prop. 5.3
−→ (E6, ̟4, ̟5)

Prop. 5.5 et al.
−→ (E7, ̟5).

Proposition 5.2. Let Sn be the rational homogeneous variety (Dn+1, ̟n+1).

(1) The horospherical variety (Bn, ̟n−1, ̟n) is a linear section of the

horospherical variety (Dn+1, ̟n−1, ̟n+1).

(2) F1(̂Sn) is isomorphic to the horospherical variety (Dn+1, ̟n−1, ̟n+1).

Proof. (1) Let Sn be the rational homogeneous variety (Dn+1, ̟n+1). Then,
Sn is isomorphic to (Bn, ̟n). Furthermore, (Bn, ̟n−1) is a linear section of
F1(Sn) = (Dn+1, ̟n−1) (Proposition 4.4). Therefore, X = (Bn, ̟n−1, ̟n) is
a linear section of the horospherical variety (Dn+1, ̟n−1, ̟n+1).

(2) Let V0 be the one-dimensional trivial representation space of Dn+1 and
let v0 be a nonzero vector in V0. By Proposition 3.3 the closure of the Dn+1-

orbit Dn+1.[vn ⊕ v0] is the cone ̂Sn over Sn with vertex [0⊕ v0].
We first show the following properties.

(1) F1(̂Sn) has three Dn+1-orbits: one is open and the others are closed.
(2) The open Dn+1-orbit is isomorphic to a C

×-bundle over (Dn+1, {̟n−1,
̟n+1}).

(3) One closed orbit is isomorphic to (Dn+1, ̟n−1) and the other closed
orbit is isomorphic to (Dn+1, ̟n+1).

The variety of lines in ̂Sn passing through the vertex [0 ⊕ v0] is isomorphic

to the base Sn of the cone ̂Sn, and thus, it is isomorphic to (Dn+1, ̟n+1). The
variety of lines in the base Sn is isomorphic to (Dn+1, ̟n−1) (Proposition 4.4).

These two varieties are closed orbits in F1(̂Sn).
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Figure 1. Embeddings of (3) (B5, ̟4, ̟5) and (5) (F4, ̟2,
̟3) in Proposition 5.1.

Let Ω denote the complement of these two closed orbits. Let ℓ be a line in
̂Sn corresponding to a point in Ω. By Proposition 3.2, there is a line L in Sn

such that ℓ is contained in the cone ̂L over L with vertex. If there are two such
lines L, L′, then ℓ is contained in the intersection ̂L ∩ ̂L′. However, ̂L ∩ ̂L′ is
a line passing through the vertex, which is a contradiction. Thus, there is a

unique L with ℓ ⊂ ̂L. Since ℓ and L are lines in the plane ̂L, they intersect at
a point. Define a map

π : Ω → (Dn+1, {̟n−1, ̟n+1})

[ℓ] 7→ ([L], [L ∩ ℓ]).

Then, π is a C
×-bundle over (Dn+1, {̟n−1, ̟n+1}) and Ω is a horospherical

homogeneous space.

For any line ℓ ∈ ̂Sn, there is a line L in ̂Sn such that ℓ ⊂ ̂L. Since the variety

of lines in ̂L is P2, we have the following collapsing:

f : G×P P
2 → F1(̂Sn),

whereG/P = (Dn+1, ̟n−1) is the variety F1(Sn) of lines in Sn. By Proposition

1 of [5], F1(̂Sn) is normal.
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By Corollary 2.3, F1(̂Sn) is isomorphic to (Dn+1, ̟n−1, ̟n+1). �

Proposition 5.3. Let S be the rational homogeneous variety (E6, ̟6).

(1) The horospherical variety (F4, ̟2, ̟3) is a linear section of the horo-

spherical variety (E6, ̟4, ̟5).

(2) F2(̂S) is isomorphic to the horospherical variety (E6, ̟4, ̟5).

Proof. (1) Let S be the rational homogeneous variety (E6, ̟6). Then, S′ :=
(F4, ̟4) is a linear section of S (Section 6.3 of Landsberg-Manivel [6]). By
Proposition 3.1, F1(S

′) is a linear section of F1(S). Furthermore, (F4, ̟3) is a
linear section of F1(S

′) by Proposition 4.4. Hence, (F4, ̟3) is a linear section of
F1(S) = (E6, ̟5). Similarly, (F4, ̟2) is a linear section of (E6, ̟4)(Proposition
4.4). Therefore,X = (F4, ̟2, ̟3) is a linear section of the horospherical variety
(E6, ̟4, ̟5).

(2) Let V0 be the one-dimensional trivial representation of E6 and let v0 be a
nonzero vector in V0. By Proposition 3.3 the closure of the E6-orbit E6.[vn⊕v0]

is the cone ̂S over S with vertex [0⊕ v0].
We first show the following properties.

(1) F2(̂S) has three E6-orbits: one is open and the others are closed.
(2) The open E6-orbit is isomorphic to a C

×-bundle over (E6, {̟4, ̟5}).
(3) One closed orbit is isomorphic to (E6, ̟4) and the other closed orbit

is isomorphic to (E6, ̟5).

The variety of planes in ̂S passing through the vertex [0⊕ v0] is isomorphic

to the Fano variety F1(S) of lines in the base of the cone ̂S, and thus, it is
isomorphic to (E6, ̟5). The variety of planes in the base S is isomorphic to

(E6, ̟4) (Proposition 4.4). These two varieties are closed orbits in F2(̂S).
Let Ω denote the complement of these two closed orbits. Let ℘ be a plane

in ̂S corresponding to a point in Ω. By Proposition 3.2, there is a plane E in

S such that ℘ is contained in the cone ̂E over E with vertex. If there are two

such planes E, E′, then ℘ is contained in the intersection ̂E ∩ ̂E′. If E and

E′ intersect at a point, then ̂E ∩ ̂E′ = Ê ∩ E′ is a line, and it cannot contain
the plane ℘, which is a contradiction. If E and E′ intersect in a line, then
̂E ∩̂E′ = Ê ∩ E′ is a plane passing through the vertex and is equal to ℘, which
contradicts to the assumption that ℘ does not contain the vertex. Thus, there

is a unique E with ℘ ⊂ ̂E. Since ℘ and E are planes in the linear space ̂E of
dimension 3, they intersect in a line. Define a map

π : Ω → (E6, {̟4, ̟5})

[℘] 7→ ([E], [E ∩ ℘]).

Then π is a C
×-bundle over (E6, {̟4, ̟5}) and Ω is a horospherical homoge-

neous space.
As in the proof of Proposition 5.2(2), there is a collapsing

g : G×P P
3 → F2(̂S),



444 J. HONG

where G/P = (E6, ̟4) is the variety F2(S) of planes in S. Thus, F2(̂S) is
normal.

By Corollary 2.3, F2(̂S) is isomorphic to (E6, ̟4, ̟5). �

Proposition 5.4. Let Sn be the rational homogeneous variety (Bn, ̟n). Then,
there is an embedding of Sn into the variety Cx(S) of minimal rational tangents

of the rational homogeneous variety S at the base point x of S in the following

cases:

(1) n = 3 and S = (F4, ̟4) or S = (D5, ̟1);
(2) n = 4 and S = (E6, ̟1);
(3) n = 5 and S = (E7, ̟1);
(4) n = 6 and S = (E8, ̟1).

Proof. The variety Cx(S) of minimal rational tangents of S = (F4, ̟4) has
(B3, ̟3) as a linear section (Proposition 4.1).

The variety Cx(S) of minimal rational tangents of S respectively equal to
(D5, ̟1), (E6, ̟1), (E7, ̟1) and (E8, ̟1) are respectively (D4, ̟4), (D5, ̟5),
(D6, ̟6) and (D7, ̟7) (Proposition 4.1). Furthermore, (Bn, ̟n) is isomorphic
to (Dn+1, ̟n+1). �

Proposition 5.5. Let S be the rational homogeneous variety (E6, ̟6) and let

S be the rational homogeneous variety (E7, ̟7). Then there is an embedding

of S into the variety Cx(S) of minimal rational tangents of S at the base point

x.

Proof. The variety Cx(S) of minimal rational tangents of S = (E7, ̟7) is
(E6, ̟6) (Proposition 4.1). �

Proof of Proposition 5.1. (1)–(4) By Proposition 5.2, the horospherical variety

(Bn, ̟n−1, ̟n) is a linear section of the Fano variety F1(̂Sn) of lines in the

cone ̂Sn over Sn. By Proposition 5.4, there is an embedding of Sn into the
variety Cx(S) of minimal rational tangents of the rational homogeneous variety

S at the base point x in cases (1) – (4). By Proposition 3.5, the cone ̂Sn can

be embedded into S as a linear section, and F1(̂Sn) is again a linear section of
F1(S). Put S = F1(S). Then X = (Bn, ̟n−1, ̟n) can be embedded into S as
a linear section.

(5) The proof is similar to that of (1)–(4). In this case, use Proposition 5.3,
Proposition 5.5, and Proposition 3.5, and then, put S = F2(S).

(6)–(7) We already know that there is an embedding of X = (Cn, ̟i+1, ̟i)
into S = (Cn+1, ̟i+1). One can prove this using the method described above.
In particular, this new method provides another embedding: the embedding of
X = (C2, ̟2, ̟1) into S = (F4, ̟3).

(8) Let S be the rational homogeneous variety (G2, ̟1). Then, S is the
hyperquadric Q

5 of P6, and thus, it is isomorphic to (B3, ̟1). Furthermore,
(G2, ̟2) is a linear section of F1(S) = (B3, ̟2) (Proposition 4.4). Therefore,
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X = (G2, ̟2, ̟1) is a linear section of the horospherical variety (B3, ̟2, ̟1).
Using the same method described above, starting with the embedding of S =
(B3, ̟1) into Cx(S) where S = (B4, ̟1), we get an embedding of (B3, ̟2, ̟1) =

F1(̂S) into S = F1(S) as a linear section. Consequently, X = (G2, ̟2, ̟1) can
be embedded into S = (B4, ̟2) as a linear section.

(9) (B3, ̟3) is isomorphic to (D4, ̟4), and (B3, ̟1) is a linear section of
(D4, ̟1). Thus, the horospherical variety X = (B3, ̟1, ̟3) is a linear section
of the horospherical variety (D4, ̟1, ̟4). By the triviality of D4, (D4, ̟1, ̟4)
is isomorphic to (D4, ̟3, ̟4). Now, (D4, ̟3, ̟4) is isomorphic to (B4, ̟4) =
(D5, ̟5). �

Now Theorem 1.2 follows from Theorem 1.1 and Proposition 5.1.

Remark. (Bn, ̟n) is isomorphic to (Bn, 2̟n), but the embeddings are differ-
ent: the latter is the Veronese re-embedding of the former. Thus, (Bn, ̟n−1,
̟n) is not isomorphic to (Bn, ̟n−1, 2̟n). Using the method described above,

one can show that (Bn, ̟n−1, 2̟n) is isomorphic to Fn−1(Q̂2n−1), which is

singular because Q̂2n−1 is singular.

In Proposition 5.2(2) we prove that the Fano variety F1(̂S) of the cone ̂S

over the rational homogeneous variety S = (Dn+1, ̟n+1) is the horospherical
variety (Dn+1, ̟n−1, ̟n+1). While proving this, we use the fact that F1(S) is
(Dn+1, ̟n−1). The same arguments can be applied to S = (G, ̟) for any end
̟ of the Dynkin diagram of G.

Proposition 5.6. Let S be a rational homogeneous variety (G, ̟). Assume

that ̟ is an end of the Dynkin diagram of G and is not associated to a short

simple root. Then, the Fano variety F1(̂S) of the cone ̂S over S is the horo-

spherical variety (G, ̟(1), ̟), where ̟(1) is the node adjacent to ̟.

More generally, as we prove that the Fano variety F2(̂S) is the horospherical
variety (E6, ̟4, ̟5) for S = (E6, ̟6) in Proposition 5.3(2), one can prove the
following.

Proposition 5.7. Let S be a rational homogeneous variety (G, ̟). Assume

that ̟ is an end of the Dynkin diagram of G and that ̟ is not associated to a

short simple root. Let (̟(r), . . . , ̟(1), ̟) be the branch of the Dynkin diagram

of G with the end ̟. Then, for r ≥ k ≥ 1, the Fano variety Fk(̂S) of the cone
̂S over S is the horospherical variety (G, ̟(k), ̟(k−1)). Here, we set ̟(0) = ̟.

If, furthermore, there is another rational homogeneous variety S such that

the variety Cx(S) of minimal rational tangents of S at the base point x ∈ S is

isomorphic to S, then Fk(S) =: S is a rational homogeneous variety of Picard

number one, and the horospherical variety (G, ̟(k), ̟(k−1)) can be embedded

into S as a linear section for r ≥ k ≥ 1.
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Proof. For the first statement, use the same arguments as those in the proof
of Proposition 5.3. For the second statement, use the same arguments as those
in the proof of Proposition 5.1. �

Remark. If ̟ is an end of the Dynkin diagram of G and ̟ corresponds to
a short simple root, then (G, ̟) is either (Bn, ̟n), (Cn, ̟1), (F4, ̟4), or
(G2, ̟1). In these cases, (G, ̟) can be considered as (Dn+1, ̟n+1), (A2n−1,
̟1), a hyperplane section of (E6, ̟6), and a hyperplane section of (D4, ̟4),
respectively. Let S

′ be the latter homogeneous variety. Then, for the branch
(̟(r), . . . , ̟(1), ̟) of the Dynkin diagram of G with the end ̟, the horospher-

ical variety (G, ̟(k), ̟(k−1)) is a linear section of Fk(̂S′), and Fk(̂S′) can be
embedded into a rational homogeneous variety of Picard number one, if S′ is
isomorphic to the variety Cx(S) of minimal rational tangents of S at the base
point x ∈ S. These are the embeddings we constructed in Proposition 5.1,
except the embedding of (F4, ̟3, ̟4) into (E7, ̟6). This is not included in the
list of Proposition 5.1 because (F4, ̟3, ̟4) is singular.
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