
J. Korean Math. Soc. 53 (2016), No. 2, pp. 315–329
http://dx.doi.org/10.4134/JKMS.2016.53.2.315

SATURATED STRUCTURES FROM PROBABILITY THEORY

Shichang Song

Abstract. In the setting of continuous logic, we study atomless proba-
bility spaces and atomless random variable structures. We characterize
κ-saturated atomless probability spaces and κ-saturated atomless random
variable structures for every infinite cardinal κ. Moreover, κ-saturated
and strongly κ-homogeneous atomless probability spaces and κ-saturated
and strongly κ-homogeneous atomless random variable structures are
characterized for every infinite cardinal κ. For atomless probability spaces,
we prove that ℵ1-saturation is equivalent to Hoover-Keisler saturation.
For atomless random variable structures whose underlying probability
spaces are Hoover-Keisler saturated, we prove several equivalent condi-
tions.

1. Introduction

The notion of saturation comes from model theory and is one of the central
notions in model theory. Hoover and Keisler in [14] studied saturated proba-
bility spaces. Although classical first order logic is not suitable for applications
to probabilistic structures, Keisler and his followers studied probability spaces
with a model-theoretic flavor. The book [10] is a survey of this topic. Let Γ
be a probability space and let X be a Polish metric space. Let f, g : Γ → X be
random variables. A probability space Ω is said to have the saturation property

for dist(f, g) if for every random variable f ′ : Ω → X with dist(f) = dist(f ′),
there is a random variable g′ : Ω → X such that dist(f, g) = dist(f ′, g′). A
probability space Ω is said to be Hoover-Keisler saturated if for all random
variables f, g : Γ → X , where Γ is an probability space and X is a Polish
metric space, Ω has the saturation property for dist(f, g). It was shown in
[10, 13, 14, 15] that many properties, such as saturation properties for random
variables and stochastic processes, existence of solutions of stochastic integral
equations, regularity properties for distributions of correspondences, and the
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existence of pure strategy equilibria in games with many players, are not real-
ized in the standard Lebesgue space, but are realized in saturated probability
spaces. The earlier work used nonstandard methods, especially used the Loeb
probability spaces, and [15] used measure-theoretic probabilistic methods.

Continuous logic was developed recently; see [4] and [6] for references. In
continuous logic, the truth value table is the interval [0, 1] instead of {True,
False} in classical logic. Continuous logic is better suited to study structures
from analysis than classical first order logic, and it has improved the effective-
ness of first order model theory for those structures; for instance, see [2, 3, 7].
In continuous logic, the notions that were investigated by Keisler and his fol-
lowers, such as universality, homogeneity, and saturation, are defined in an
analogous way as in first order model theory.

Let (Ω,F , µ) be a probability space. Naturally, we define a probability

algebra (F̂ , µ) associated to (Ω,F , µ); see Section 2.1 for details. Also, we
define a ([0, 1]-valued) random variable structure L1

(

(Ω,F , µ), [0, 1]
)

based on
(Ω,F , µ); see more in Section 2.2. Ben Yaacov [1] studied probability algebras
in the setting of compact abstract theories. His work on probability algebras
was later carried into continuous logic by Berenstein and Henson as part of the
background of their paper [7]. The theory of probability algebras is axiomatized
by Pr and APr for its atomless counterpart. In [2], Ben Yaacov studied the
theory of ([0, 1]-valued) random variable structures (axiomatized by RV), and
its atomless counterpart (axiomatized by ARV). He showed that the theory Pr

and the theory RV are biinterpretable.
In this paper, we study probability spaces and random variable structures

under the framework of continuous logic. In the theory APr, we study notions
of homogeneity and saturation in the setting of continuous logic, and connect
them with analogous notions studied by Keisler, Hoover, and Fajardo. Our new
result here is Theorem 4.1, which characterizes κ-saturated models of APr for all
infinite cardinals κ. Our main tool in proving this result is Maharam’s Theorem
2.4 for measure algebras. We prove that a probability space is Hoover-Keisler
saturated if and only if it is ℵ1-saturated. Then κ-saturated and strongly
κ-homogeneous models of APr are described for all infinite cardinals κ. In
the theory ARV, Theorem 5.3 characterizes κ-saturated models of ARV for
all infinite cardinals κ. We give several equivalent conditions in Theorem 5.4
for Hoover-Keisler saturation. Then κ-saturated and strongly κ-homogeneous
models of ARV are described for all infinite cardinals κ.

We assume the reader is familiar with basics of continuous logic. This paper
is organized as follows. Section 2 gives the background and notations for mea-
sure algebras (e.g., Maharam’s Theorem), and the theories APr and ARV. We
also list some technical lemmas. In Section 3, several notions of homogeneity
coming from measure theory and model theory are discussed. In Section 4,
we describe κ-saturated models of APr for every infinite cardinal κ and then
we show that for atomless probability spaces, ℵ1-saturation is equivalent to
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Hoover-Keisler saturation. In Section 5, we characterize κ-saturated models of
ARV for all infinite cardinals κ.

2. Background and notations

In this section, we give the background and notations needed in this paper.
We also list some technical lemmas that will be used in later sections.

2.1. Measure algebras

In this subsection, we present the necessary background for measure alge-
bras. Some properties of “atomless over” are given, which play an important
role in the next sections. Also, we present Maharam’s celebrated theorem (The-
orem 2.4), which characterizes the structure of measure algebras. See [11] for
more details.

A measure space is a triple (X,A, µ) where X is a set, A is a σ-algebra of
subsets of X , and µ : A → [0,∞) is a countably additive finite-valued measure.
A measured algebra is a pair (A, µ) where A is a σ-complete boolean algebra
and µ : A → [0,∞) is a finite-valued function such that µ(a) = 0 if and only if
a = 0, and µ is countably additive. A boolean algebra A is said to be a measure

algebra if there is a finite-valued µ for which (A, µ) is a measured algebra. A
measured algebra (A, µ) is called a probability algebra if µ(1) = 1. Let (A, µ)
be a measured algebra. For all a, b ∈ A, define

d(a, b) = µ(a△b),

where △ is the symmetric difference of those two sets. In [12, Lemma 323F],
it is shown that A is complete under this metric.

Let (X,A, µ) be a measure space. For all a, b ∈ A, we write a ≡µ b if
µ(a△b) = 0. Note that ≡µ defines an equivalence relation. We denote the

equivalence class of a under ≡µ by [a]µ. Let ̂A denote the set {[a]µ | a ∈ A}.
Then it is routine to verify that the operations of complement, union and

intersection on A induce operations on ̂A, which make ̂A a σ-complete boolean
algebra. Moreover, µ induces a countably additive, strictly positive measure on
̂A. We call ( ̂A, µ) the measured algebra associated to (X,A, µ) and we call ̂A the
measure algebra associated to (X,A, µ). If the measure µ on A is a probability

measure, then we call ( ̂A, µ) the probability algebra associated to (X,A, µ).
Let A be a boolean algebra and let A+ denote the set of nonzero elements

in A. For every a ∈ A+, the relative algebra of A on a, denoted by A ↾ a, is the
set {a∩ b | b ∈ A}. Note that A ↾ a is also a boolean algebra, where a becomes
the 1.

Definition. Let A be a measure algebra. Then

(i) τ(A) := inf
{

|X | : X ⊆ A and A is σ-generated by X
}

.
(ii) (τ -homogeneous) We say that A is τ-homogeneous if τ(A ↾ a) = τ(A)

for all a ∈ A+.
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(iii) (homogeneous) We say that A is homogeneous if A ∼= A ↾ a as a boolean
algebra for all a ∈ A+.

(iv) Suppose B is a σ-subalgebra of A. For every a ∈ A, we define

τB(a) = inf
{

|X | : X ⊆ A and A ↾ a is σ-generated by {a ∩ b | b ∈ X ∪B}
}

.

Definition. (i) A measure space (X,A, µ) is atomless if for every a ∈ A
of positive measure, there exists b ∈ A such that b ⊆ a and 0 < µ(b) <
µ(a).

(ii) Let (X,A, µ) be a measure space and let B be a σ-subalgebra of A. We
say that A is atomless over B, if for every a ∈ A of positive measure,
there exists c ∈ A such that for all b ∈ B, we have a ∩ c 6= a ∩ b.

(iii) Let (X,A, µ) be a measure space and let B be a σ-subalgebra of A.
Given an infinite cardinal κ, we say that A is κ-atomless over B, if for
every σ-subalgebra B′, which is σ-generated by B ∪S, where S is a set
of cardinality < κ in A, we have that A is atomless over B′. When B
is trivial and A is κ-atomless over B, we say simply that (X,A, µ) is

κ-atomless.

Analogously, we define these notions of atomlessness for measure algebras.

Definition. (i) A measure algebra A is atomless if for every a ∈ A+, there
exists b ∈ A+ such that b ∩ a = b and b 6= a.

(ii) Let A be a measure algebra and let B be a σ-complete subalgebra of
A. We say that A is atomless over B, if for every a ∈ A+, there exists
c ∈ A such that for all b ∈ B, we have a ∩ c 6= a ∩ b.

(iii) Let A be a measure algebra and let B be a σ-complete subalgebra of
A. Given an infinite cardinal κ, we say that A is κ-atomless over B,
if for every σ-complete subalgebra B′, which is σ-generated by B ∪ S,
where S is a set of cardinality < κ in A, we have that A is atomless
over B′. When B is trivial and A is κ-atomless over B, we say simply
that A is κ-atomless.

Lemma 2.1 (Maharam’s Lemma). Let (X,A, µ) ⊇ (X,B, µ) be measure spaces

and let ̂A and ̂B be the measure algebras associated to (X,A, µ) and (X,B, µ)
respectively. Then the following are equivalent:

(i) The measure space (X,A, µ) is atomless over (X,B, µ).
(ii) For every a ∈ A of positive measure and for every B-measurable func-

tion f : X → R such that 0 ≤ f ≤ E(a | B), there is a set b ∈ A such

that b ⊆ a and E(b | B) = f .

(iii) The measure algebra ̂A is atomless over ̂B.

Proof. (i) ⇔ (ii): This is [8, Theorem 1.3].
(i) ⇔ (iii): This is easy and left to the readers. �

For the notion of “atomless over”, we have the following technical lemma:
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Lemma 2.2. Let A ⊇ B be two probability algebras. If A is atomless over B,

then τB(a) ≥ ω for all a ∈ A+.

Proof. This follows from [14, Lemma 4.4(ii)]. �

Let [0, 1]κ denote the product of κ copies of [0, 1] with Lebesgue measure
and let µκ be the product measure on it. Let (Aκ, µκ) denote the measured
algebra associated to the product measure space ([0, 1]κ, µκ). For all subsets
∆ ⊇ Γ of κ, let pr∆Γ : [0, 1]∆ → [0, 1]Γ be the canonical projection mapping.
We write simply prΓ if ∆ = κ. The following proposition describes the Borel
measurable subsets of [0, 1]κ.

Proposition 2.3. Let κ be an infinite ordinal and let (Aκ, µκ) denote the

measured algebra associated to the product measure space ([0, 1]κ, µκ). Then

(i) The set of Borel measurable subsets of [0, 1]κ is

Bκ = {pr−1
Γ (G) | Γ ⊆ κ is countable and G is a Borel subset of [0, 1]Γ}.

(ii) For all countable subsets Γ of κ and all Borel subsets G of the product

measure space ([0, 1]Γ, µΓ), we have

µκ(pr−1
Γ (G)) = µΓ(G).

(iii) For every A ∈ Aκ, there is B ∈ Bκ such that [B]µκ = A, where [B]µκ

is the equivalence class of B under ≡µκ .

Proof. (i) Note that Bκ is a σ-algebra and it contains the basic open sets in
the product topological space [0, 1]κ. Hence Bκ is the set of Borel measurable
subsets of the product measure space [0, 1]κ.

(ii) and (iii) follow from [11, Theorem 1.11]. �

The following Maharam’s Theorem [16] gives us the characterization of mea-
sure algebras.

Theorem 2.4 (Maharam’s Theorem [16, Theorem 2]; see also [11, Theorem
3.9]). For all atomless probability spaces Ω, there is a countable set of distinct

infinite cardinals S = {κi | i ∈ I} such that the measure algebra of Ω is

isomorphic to a convex combination of the homogeneous probability algebras

[0, 1]κi. The set S is uniquely determined by Ω and is called the Maharam

spectrum of Ω. �

Note that the measure algebra of ([0, 1]n, µn) is isomorphic to the measure
algebra of ([0, 1]ω, µω) for all n ≥ 1.

Remark 2.5. The Maharam spectrum of ([0, 1]κ, µκ) is {max(ℵ0, κ)}.
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2.2. Theories APr and ARV

Here, we give notations and background for the theories APr and ARV. For
more details, see [2] and [7].

First, we introduce the theory APr, which was first studied by Ben Yaacov in
[1] under the setting of compact abstract theories. Later, his work was carried
into continuous logic in the background sections of Berenstein and Henson in
[7]. Here, we follow the notations in [7]. Let the signature LPr denote the set
{0,1, ·c,∩,∪, µ}, where 0 and 1 are constant symbols, ·c is a unary function
symbol, ∩ and ∪ are binary function symbols, and µ is a unary predicate
symbol. Among those symbols, ·c and µ are 1-Lipschitz, and ∩ and ∪ are
2-Lipschitz. Let (Ω,F , µ) be a probability space and let F̂ be the probability

algebra associated to (Ω,F , µ). Now we interpret ̂F as an LPr-structure M =

( ̂F ,0,1, ·c,∩,∪, µ, d). We interpret 0 as [∅]µ, 1 as [Ω]µ, the unary function ·c

as the complement of equivalence classes of events, and ∩, ∪ as the intersection
and union of equivalence classes of events. The predicate µ is interpreted as

the measure of equivalence classes of events, and d, the metric on ̂F , is defined

as d(A,B) := µ(A△B) for all A,B ∈ ̂F . Note that the interpretations of
all function and predicate symbols satisfy the moduli of uniform continuity of

those symbols. Also ( ̂F , d) is a complete metric space. Hence M is an LPr-

structure. The LPr-structure M = (F̂ ,0,1, ·c,∩,∪, µ) is called a probability

algebra. It is called an atomless probability algebra if the probability space
(Ω,F , µ) is atomless. The LPr-theory of probability algebra is axiomatized by
the theory Pr and APr for its atomless counterpart; see [7] for axioms of Pr

and APr. The theory APr is separably categorical, complete, admits quantifier
elimination, and is ω-stable, by [1, Proposition 2.10].

Next, we introduce the theory ARV, which was first introduced by Ben
Yaacov in [2] building on the work of APr. The theory ARV was further studied
in [3, 18]. Let (Ω,F , µ) be a probability space. Let L1

(

(Ω,F , µ), [0, 1]
)

, or

simply L1(µ, [0, 1]), denote the L1-space of classes of [0, 1]-valued F -measurable
functions equipped with L1-metric. A ([0, 1]-valued) random variable structure

is based on a set of the form M = L1
(

(Ω,F , µ), [0, 1]
)

, where (Ω,F , µ) is a
probability space. It is called an atomless random variable structure, if its
underlying probability space is atomless. We consider the signature LRV =
{0,¬,−· , 1

2 , I}, where 0 is a constant symbol, −· is a binary function symbol, ¬

and 1
2 are unary function symbols, and I is a unary predicate symbol. Among

those symbols, ¬ is 1-Lipschitz, −· is 2-Lipschitz, 1
2 is 1

2 -Lipschitz, and I is
1-Lipschitz. We interpret the symbols of LRV in M as follows:

• 0M(ω) = 0 for all ω ∈ Ω,
• ¬M(f) = 1 − f for all f ∈ M ,
• (−· )M(f, g) = f −· g = max(f − g, 0) for all f, g ∈ M ,
• (12 )Mf = f/2 for all f ∈ M ,

• IM(f) =
∫

Ω fdµ for all f ∈ M ,
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• dM(f, g) =
∫

Ω |f − g|dµ for all f, g ∈ M .

Then M =
(

L1
(

(Ω,F , µ), [0, 1]
)

,0,¬,−· , 1
2 , I, d

)

is an LRV-structure. Let RV

denote the class of all random variable structures as LRV-structures and let
ARV denote the class of all atomless random variable structures as LRV-
structures. Ben Yaacov [2] axiomatized the class RV by the theory RV and its
atomless counterpart by the theory ARV. Ben Yaacov’s axiomatization is based
on the completeness theorem for  Lukasiewicz’s [0, 1]-valued propositional logic.
An elementary approach to axiomatizing the class RV is given in [19]. The
theory ARV is separably categorical, complete, admits quantifier elimination,
and is ω-stable, by [2, Theorem 2.17].

3. Homogeneous models of APr

Definition 2.1 gives several notions of homogeneity coming from measure
theory. In this section, we will show the connection between those notions of
homogeneity and model-theoretic homogeneity.

Proposition 3.1. Let (M,µ, d) be a probability algebra. Then τ(M) + ℵ0 =
‖M‖ + ℵ0 where ‖M‖ is the density character of M .

Proof. This is trivial when M is finite. Assume M is infinite, then τ(M) and
‖M‖ are both infinite. Let X be a subset of M such that M is σ-generated
by X . Then consider the smallest boolean algebra A containing X . Since X
is infinite, |X | = |A|. Note that A is a dense subset of M . Thus ‖M‖ ≤
|A| = |X |, whereby ‖M‖ ≤ τ(M). Let Y be a dense subset of M . Since
the σ-complete subalgebra σ(Y ) is a measure algebra, it is complete under the
metric d(a, b) = µ(a△b). Hence, we have σ(Y ) ⊇ Y = M . Thus τ(M) ≤ |Y |,
whereby τ(M) ≤ ‖M‖. Therefore, τ(M) = ‖M‖. �

The following result shows the connection among several notions of homo-
geneity.

Proposition 3.2. Let A = (A, µ, d) be an atomless probability algebra. Then

the following are equivalent:

(i) A is τ-homogeneous as a measure algebra.

(ii) A is homogeneous as a measure algebra.

(iii) A is strongly ‖A‖-homogeneous as an LPr-structure.

(iv) A is strongly ω-homogeneous as an LPr-structure.

Proof. The implication (i) ⇒ (ii) is [11, Corollary 3.6].
For (ii) ⇒ (iii), there are two cases.
(a) When ‖A‖ = τ(A) = ℵ0, the proof is easy, since the σ-subalgebra σ-

generated by a finite set is still finite.
(b) Suppose ‖A‖ = τ(A) > ℵ0. Let C be an infinite subset of A with

Card(C) < ‖A‖, and let a, b ∈ A such that tp(a/C) = tp(b/C). Define g : a ∪
C → b ∪ C as g(a) = b and g(c) = c for all c ∈ C. Clearly, g extends to
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a monomorphism g′ : σ(a, C) → σ(b, C) ⊆ A, where σ(a, C) and σ(b, C) are
σ-generated σ-subalgebras. Note that τ(σ(a, C)) = ‖σ(a, C)‖ < ‖A‖. By [11,
Corollary 3.19], g′ extends to an automorphism of A fixing σ(C) pointwise and
sending a to b, which shows that A is strongly ‖A‖-homogeneous.

The implication (iii) ⇒ (iv) is trivial.
We complete the proof by showing (iv) ⇒ (i). We argue as follows:

(1) For all a, b ∈ A+, if µ(a) = µ(b), then there exists an automorphism f
sending a to b. Hence τ(A ↾ a) = τ(A ↾ b).

(2) The function τ is an increasing function with respect to the measures,
that is if µ(a) ≤ µ(b), then τ(A ↾ a) ≤ τ(A ↾ b). Because there
always exists b′ ∈ A such that a ⊆ b′ and µ(b′) = µ(b), then by the
above Fact (1), we have τ(A ↾ b′) = τ(A ↾ b). Since a ⊆ b′, we have
τ(A ↾ a) ≤ τ(A ↾ b′). Then we get τ(A ↾ a) ≤ τ(A ↾ b).

(3) If a ∩ b = 0, then τ(A ↾ (a ∪ b)) ≤ τ(A ↾ a) + τ(A ↾ b) = max
(

τ(A ↾

a), τ(A ↾ b)
)

, when τ(A ↾ a) and τ(A ↾ b) are both infinite. Since A

is atomless, for all a ∈ A+ we have that τ(A ↾ a) is infinite, which is
actually a special case of Lemma 2.2.

From Facts (1), (2), and (3), we get that τ(A ↾ a) has a constant value for
all a ∈ A+. Hence we have proved that A is τ -homogeneous. �

By [11, Corollary 3.8], every homogeneous probability algebra (A, µ) is iso-
morphic to (Aκ, µκ) where κ = τ(A).

4. Saturated models of APr

In this section, we describe the κ-saturated models of APr for each infinite
cardinal κ and then we show that for atomless probability spaces, ℵ1-saturation
is equivalent to Hoover-Keisler saturation.

Definition. Let κ be an infinite cardinal. A probability space Ω is κ-saturated
if its probability algebra is κ-saturated as an LPr-structure.

Theorem 4.1. If Ω is an atomless probability space and κ is an infinite car-

dinal, then the following are equivalent:

(i) Ω is κ-saturated.
(ii) Every cardinal in the Maharam spectrum of Ω is ≥ κ.
(iii) Ω is κ-atomless.

Proof. (i) =⇒ (ii): Let (B, µ) be the probability algebra associated to Ω; hence
B |= APr. Suppose the least cardinal λ in the Maharam spectrum of B is less
than κ. By Theorem 2.4 (Maharam’s Theorem), Ω can be decomposed into
two parts: (B, µ) ∼= (Aλ, αµλ) ⊕ (B′, µ′) where (Aλ, µλ) is the probability
algebra of ([0, 1]λ, µλ), every cardinal in the Maharam spectrum of B

′ is > λ,
the real number α ∈ (0, 1], and µ′(1B′) = 1 − α. Note that Aλ as a metric
space with the metric dλ(a, b) := µλ(a△b) has a dense subset of cardinality λ.
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Let {aγ | γ ∈ λ} be such a dense subset. Without loss of generality, let a0 be
[0, 1]λ. Let p(x/{aγ ⊕ 0B′ | γ ∈ λ}) consist of the following conditions:

• µ(x)
α = 1

2 ;

• µ(x∩(aγ⊕0B′))
α = µ(x)

α
µ(aγ⊕0B′)

α for all γ ∈ λ.

The second property implies that if x = A⊕B, where A ∈ Aλ and B ∈ B′,
then A is independent from Aλ and B = 0B′ . Now, we consider the probability
algebra of ([0, 1]λ × [0, 1], αµλ × µ1) ⊕ ([0, 1], (1 − α)µ1). It is a model of APr.
Let a′γ := (aγ × [0, 1]) ⊕ 0[0,1] and a := ([0, 1]λ × [0, 12 ]) ⊕ 0[0,1]. Then we have
that tp(a′γ : γ ∈ λ) = tp(aγ ⊕ 0[0,1] : γ ∈ λ) and a realizes p(x/{a′γ : γ ∈
λ}). Hence, p(x/{aγ ⊕ 0B′ | γ ∈ λ}) is consistent. Since B is κ-saturated,
p(x/{aγ ⊕ 0B′ | γ ∈ λ}) is realized by an element a in B. Say a = A ⊕ B,
where A ∈ Aλ and B ∈ B′. Then

αµ((A ⊕B) ∩ (aγ ⊕ 0B′)) = µ(A⊕B)µ(aγ ⊕ 0B′), ∀γ ∈ λ.

Thus αµ((A ∩ aγ) ⊕ (0B′)) = (αµλ(A) + µ′(B))αµλ(aγ). Then, we get

αµλ(A ∩ aγ) = (αµλ(A) + µ′(B))µλ(aγ), ∀γ ∈ λ.

Letting γ = 0 and recalling a0 = [0, 1]λ, we have αµλ(A) = αµλ(A) + µ′(B).
Thus µ′(B) = 0. Then, µ(A⊕B) = αµλ(A)+µ′(B) = αµλ(A). Also µ(A⊕B) =
µ(a) = α

2 , whence µλ(A) = 1
2 . Then

αµλ(A ∩ aγ) = αµλ(A)µλ(aγ), ∀γ ∈ λ,

whereby

µλ(A ∩ aγ) = µλ(A)µλ(aγ), ∀γ ∈ λ.

Note that the set {C ∈ Aλ | µλ(A ∩ C) = µλ(A)µλ(C)} is a closed subset in
(Aλ, dλ). Since {aγ | γ ∈ λ} is dense in (Aλ, dλ), we have that µλ(A ∩ C) =
µλ(A)µλ(C) for all C ∈ Aλ. Since A ∈ Aλ, we have µλ(A) = µλ(A)2. Hence
µλ(A) = 0 or 1, which contradicts the fact that µλ(A) = 1

2 .
(ii) =⇒ (iii): First, consider the case where (B, µ) ∼= (Aλ, µλ) for some

λ ≥ κ, where (Aλ, µλ) is the measured algebra of the product measure space
([0, 1]λ, µλ). Since Ω is atomless, by Lemma 2.2 we know that Ω is ℵ0-atomless.
Suppose κ is uncountable. Take A ⊆ B with |A| < κ, and let A = σ(A). We
will show that B is atomless over A . Let Bλ denote the set of Borel subsets
of the measure space ([0, 1]λ, µλ). By Proposition 2.3, for each a ∈ A, there
is c(a) ∈ Bλ of the form pr−1

Γ (cΓ(a)) such that [c(a)]µλ
= a, where Γ ⊆ λ is

countable, cΓ(a) is a Borel subset of [0, 1]Γ, and prΓ : [0, 1]λ → [0, 1]Γ is the
canonical projection. We define Supp(c(a)) := Γ. Let C denote the σ-algebra
σ-generated by {c(a) | a ∈ A} in Bλ. Note that B and A are probability alge-
bras associated to ([0, 1]λ, Bλ, µλ) and ([0, 1]λ, C, µλ) respectively. By Lemma
2.1(iii), to show B is atomless over A , it suffices to show Bλ is atomless over
C. Define Supp(C) :=

⋃

a∈A Supp(c(a)). Since |Supp(c(a))| ≤ ℵ0 for each
a ∈ A, we know that Supp(C) is of cardinality |A| × ℵ0 < κ ≤ λ. Take any
γ ∈ λ\Supp(C). Let B denote the set of Borel subsets of [0, 1]{γ} = [0, 1].
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Then pr−1
{γ}(B) is an atomless σ-subalgebra of Bλ. Since elements in C only

depend on the coordinates in Supp(C) and elements in pr−1
{γ}(B) only depend

on the coordinate γ which is not in Supp(C), we know that pr−1
{γ}(B) and C are

independent. By [14, Lemma 4.4], Bλ is atomless over C.
For the general case, by Theorem 2.4 (Maharam’s Theorem) B is isomorphic

to a convex combination of probability algebras (Aκn)n∈N, where {κn | n ∈ N}
is the Maharam spectrum of Ω. Let pn : B → Aκn be the canonical projection
map for each n ∈ N. Take A ⊆ B with |A| < κ, and let A = σ(A). As shown
above, for each κn in the Maharam spectrum of Ω, we have that Aκn is atomless
over pn(A ). Let B ∈ B+. Then for some n ∈ N, we have pn(B) ∈ A+

κn
.

Since Aκn is atomless over pn(A ), there is Cn ∈ Aκn such that pn(B) ∩ Cn 6=
pn(B)∩Dn for all Dn ∈ pn(A ). Hence there is C ∈ B such that B∩C 6= B∩D
for all D ∈ A , whereby B is atomless over A .

(iii) =⇒ (i): Fix A ⊆ B with |A| < κ; let A := σ(A). By assumption, B is
atomless over A . Let p(x) be any type in S1(A). By [1, Proposition 2.10], for
all a, b in any elementary extension of B, we have that

tp(a/A) = tp(b/A) ⇐⇒ P(a | A ) = P(b | A ).

If p(x) is realized by a in some elementary extension of B, then P(a | A ) is
an A -measurable function. By Lemma 2.1 (Maharam’s Lemma), there exists
b ∈ B such that P(a | A ) = P(b | A ). Therefore tp(b/A) = tp(a/A) = p(x),
which means that p(x) is realized in B. �

Corollary 4.2. An atomless probability space is Hoover-Keisler saturated if

and only if it is ℵ1-saturated.

Proof. By [10, Theorem 3B.7], an atomless probability space Ω is Hoover-
Keisler saturated if and only if every cardinal in its Maharam spectrum is
uncountable. By Theorem 4.1, Ω is ℵ1-saturated if and only if every cardinal
in its Maharam spectrum is uncountable. �

Theorem 4.3. For all infinite cardinals κ, the probability algebra of [0, 1]κ is

strongly κ-homogeneous and κ-saturated. Moreover, it is the unique model of

APr of density character κ with these properties.

Proof. The first part follows directly from Proposition 3.2, Theorem 2.4 (Ma-
haram’s Theorem) and Theorem 4.1. The uniqueness follows from the following
argument: for a complete theory T and κ ≥ Card(T ), by a standard back-and-
forth argument, any two κ-saturated models of T of density character κ are
isomorphic to each other. �

5. Saturated models of ARV

In this section, we characterize the κ-saturated models of ARV for all infinite
cardinals κ. The theory ARV is a separably categorical theory, then by the Ryll-
Nardzewski theorem for continuous logic due to Henson (see [5, Fact 1.14]), we
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know that the unique separable model of ARV is approximately ℵ0-saturated.
However, it is not ℵ0-saturated.

Theorem 5.1. No separable model of ARV is ℵ0-saturated.

Proof. By [2, Theorem 2.17], the theory ARV is ℵ0-categorical. We may assume
the separable model M is of the form L1(λ, [0, 1]), where

(

[0, 1],B, λ
)

is the

standard Lebesgue space. Then (Ω,F , µ) =
(

[0, 1] × {0, 1},B ⊗ P ({0, 1}), λ⊗

µ0

)

is also a separable probability space, where µ0

(

{0}
)

= µ0

(

{1}
)

= 1
2 and

P ({0, 1}) is the power set of {0, 1}. Let {Cn | n ∈ N} be a countable open
basis for B and let α be a measure-preserving isomorphism between probability
spaces

∏

n∈N
({0, 1}, P ({0, 1}), µ0) and ([0, 1],B, λ). Define f : [0, 1] → [0, 1] as

follows:

f(t) = α
(

(

χC1
(t), χC2

(t), . . . , χCn(t), . . .
)

)

for all t ∈ [0, 1].

Then we know f ∈ L1(λ, [0, 1]). Now we define functions f ′, g′ from Ω to [0, 1]
by f ′(t, i) = f(t) and g′(t, i) = i for all (t, i) ∈ Ω = [0, 1] × {0, 1}. Clearly,
they are both in L1

(

µ, [0, 1]
)

. Note that dist(f ′) = dist(f), which implies
tp(f ′) = tp(f) by [2, Theorem 2.17]. Let p0(x, y) denote the type tp(f ′, g′).
Since tp(f ′) = tp(f), we get that p0(f, y) is consistent. If p0(f, y) is realized
in M by g, then because g′2 = g′, I(g′) = 1

2 and tp(g) = tp(g′), we have that

g = χD for some D ∈ B and λ(D) = 1
2 . For all n ∈ N, let Dn be the set

{

x ∈ {0, 1}N | x(n) = 1
}

. Then α(Dn) ∈ B. Now we have

µ
(

(t, i) ∈ Ω | f ′(t, i) ∈ α(Dn) and g′(t, i) = 1
)

= µ
(

(t, i) ∈ Ω | t ∈ Cn, i = 1
)

=
1

2
λ(Cn) = λ(D)λ(Cn),

and

λ
(

t ∈ [0, 1] | f(t) ∈ α(Dn) and g(t) = 1
)

= λ(D ∩ Cn).

It follows from tp(f, g) = tp(f ′, g′) that

µ
(

(t, i) ∈ Ω | f ′(t, i) ∈ α(Dn) and g′(t, i) = 1
)

= λ
(

t ∈ [0, 1] | f(t) ∈ α(Dn) and g(t) = 1
)

,

and thus λ(D ∩ Cn) = λ(D)λ(Cn). Therefore D is independent from Cn for
all n ∈ N. Similarly, we get that for all finite J ⊂ N, the set D is independent
from

⋂

j∈J Cj . Then by [9, page 26], D is independent from σ
(

{Cn}n∈N

)

= B.

Hence, λ(D ∩ D) = λ(D)2. Consequently, λ(D) = 0 or 1, which contradicts
λ(D) = 1

2 . �

Remark 5.2. This proof borrows ideas from [10, Theorem 3B.1]. In [18], an
alternative proof using d-finite tuples is given.
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Before introducing Theorem 5.3, let us explain how to build an LRV-formula
with parameters from an LPr-formula with parameters. Let (Ω,B, µ) be a prob-

ability space, and let (B̂, µ) be the probability algebra associated to (Ω,B, µ).

Let M = L1
(

µ, [0, 1]
)

. Then (B̂, µ) is an LPr-structure, and (M,d) is an LRV-

structure. Let A ⊆ B̂, and let Ã := {χa | a ∈ A} ⊆ M . Let ϕ(x, a) be
an LPr-formula, where a = (a1, . . . , an) ∈ An. We will build an LRV-formula
ϕ̃(x, ã) from ϕ(x, a), where ã = (ã1, . . . , ãn). Note that LPr = {0,1, ·c,∩,∪, µ}
and LRV = {0,¬,−· , 1

2 , I}. In the syntax of ϕ(x, a), we convert 0,1, ·c, µ
into 0,¬0,¬, I respectively. For symbols ∩ and ∪, we convert a ∩ b into
ã∧ b̃ := ã−· (ã−· b̃), and we convert a∪ b into ã∨ b̃ := ¬(¬ã∧¬b̃). Inductively,
we get an LRV-formula ϕ̃(x, ã) from an LPr-formula ϕ(x, a).

Theorem 5.3. Let M be a model of ARV. Suppose M = L1
(

µ, [0, 1]
)

for

the atomless probability space (Ω,B, µ). For every uncountable cardinal κ, the
structure M |= ARV is κ-saturated if and only if (Ω,B, µ) is κ-saturated.

Proof. =⇒: Suppose M is κ-saturated. We want to show that B̂ is also κ-

saturated. For all A ⊆ B̂ with |A| < κ, and all p(x) = tp(x/A) ∈ SAPr

1 (A), let

Ã := {χa | a ∈ A} ⊆ M . Then |Ã| < κ. Now, let p̃(x) be a type in SARV
1 (Ã)

including x ∧ ¬x = 0 and all ϕ̃(x, ã), where ϕ(x, a) ∈ p(x). The way how to
build ϕ̃(x, ã) from ϕ(x, a) is just explained before this theorem. Suppose that

p(x) is realized by c in an elementary extension of B̂, then it is easy to notice
that χc is in an elementary extension of M and χc realizes p̃(x). Thus, p̃(x) is

consistent. Since M is κ-saturated, we know that p̃(x) ∈ SARV

1 (Ã) is realized
in M by an element, say f . As f ∧ ¬f = 0, we know that f is a characteristic

function. Thus there is b ∈ B̂ such that χb = f . Then it is easy to verify that

b |= p(x) = tp(x/A), and thus, B̂ is κ-saturated.
⇐=: Let A ⊆ M with |A| < κ and tp(x/A) ∈ SARV

1 (A). Suppose tp(x/A) is
realized by f in N , which is an elementary extension of M. For every t ∈ [0, 1],
the conditional probability P

(

f > t | σ(A)
)

is a σ(A)-measurable function.
Since κ is uncountable, σ(A) is σ-generated by ℵ0 + |A| < κ many elements.
By Theorem 4.1, B is κ-atomless, therefore it is atomless over σ(A). Thus by
[14, Lemma 4.4], there exists a B-measurable random variable g : Ω → [0, 1]
such that for every t ∈ [0, 1],

P
(

g > t | σ(A)
)

= P
(

f > t | σ(A)
)

almost surely.

By [2, Theorem 2.17], tp(f/A) = tp(g/A). Therefore, tp(x/A) = tp(f/A) is
realized by g in M . �

Theorem 5.4. Let M = L1
(

µ, [0, 1]
)

|= ARV, where (Ω,B, µ) is an atomless

probability space. Then the following are equivalent:

(i) Ω is Hoover-Keisler saturated.

(ii) Ω is ℵ1-saturated.

(iii) Every cardinal in the Maharam spectrum of Ω is uncountable.

(iv) M is ℵ1-saturated.
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(v) M is ℵ0-saturated.

(vi) For all elements a, b, c ∈ M with tp(a) = tp(b), there exists d ∈ M
such that tp(a, c) = tp(b, d).

Proof. The equivalence (i) ⇐⇒ (ii) is Corollary 4.2.
The equivalence (ii) ⇐⇒ (iii) is Theorem 4.1.
The equivalence (ii) ⇐⇒ (iv) is Theorem 5.3.
The implication (iv) ⇒ (v) is trivial.
(v) ⇒ (vi): Let p(x, y) be tp(a, c); it is in S2(ARV ). Then tp(a) = tp(b)

implies that p(b, y) is consistent. Since M is ℵ0-saturated, p(b, y) is realized in
M by some element, say d. Then tp(b, d) = tp(a, c) = p(x, y).

(vi) ⇒ (iii): Suppose not, then by Theorem 2.4 (Maharam’s Theorem), Ω
has a decomposition

(Ω,B, µ) ∼= r · ([0, 1],L, λ) ⊕ (1 − r) · (Ω′,B′, µ′) for some r ∈ (0, 1],

where ([0, 1],L, λ) is the standard Lebesgue space, (Ω′,B′, µ′) is a probability
space, and every cardinal in the Maharam spectrum of the probability space Ω′

is uncountable. Take a countable open basis for [0, 1], denoted by {Cn | n ∈ N},
and let α be a measure-preserving isomorphism between probability spaces

∏

n∈N

({0, 1}, P ({0, 1}), µ0)

and ([0, 1],B, λ). Define f : Ω = [0, 1]⊔ Ω′ → [0, 1] by f(ω′) = 0 for all ω′ ∈ Ω′

and

f(t) = α((χC1
(t), χC2

(t), . . . , χCn(t), . . .)) for all t ∈ [0, 1].

Then we know that f ∈ L1(µ, [0, 1]). Now define (Ω, µ̄) as (Ω, µ) × ({0, 1}, µ0)
where µ0({0}) = µ0({1}) = 1

2 . Then define functions f ′, g′ from Ω = Ω×{0, 1}
to [0, 1] by f ′(ω, i) = f(ω) and g′(ω, i) = i for all (ω, i) ∈ Ω × {0, 1}. They are
in L1(µ̄, [0, 1]). Note that dist(f ′) = dist(f), which implies tp(f ′) = tp(f) by
[2, Theorem 2.17]. Let p(x, y) denote the type tp(f ′, g′). By [2, Theorem 2.17],
the theory ARV is separably categorical. Therefore p(x, y) is realized in M , say
by (f ′′, g′′). Then tp(f ′′) = tp(f). By the assumption of (vi), we know that
p(f, y) is realized in M by an element g, whence tp(f, g) = tp(f ′, g′). Because
g′2 = g′, I(g′) = 1

2 , and tp(g) = tp(g′), we have that g = χD for some D ∈ B

and µ(D) = 1
2 . Say D = D0 ⊔D′ with D0 ⊆ [0, 1] and D′ ⊆ Ω′. For all n ∈ N,

let Dn be the set {x ∈ {0, 1}N | x(n) = 1}. Then α(Dn) is a measurable subset
of [0, 1]. Thus we have

µ̄
(

(ω, i) ∈ Ω | f ′(ω, i) ∈ α(Dn) and g′(ω, i) = 1
)

= µ̄
(

(t, i) ∈ Ω̄ | t ∈ Cn, i = 1
)

=
1

2
µ(Cn) = µ(D)µ(Cn),

and

µ
(

ω ∈ Ω | f(ω) ∈ α(Dn) and g(ω) = 1
)

= µ(D ∩ Cn).
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If follows from tp(f, g) = tp(f ′, g′) that

µ̄
(

(ω, i) ∈ Ω | f ′(ω, i) ∈ α(Dn) and g′(ω, i) = 1
)

= µ
(

ω ∈ Ω | f(ω) ∈ α(Dn) and g(ω) = 1
)

,

and thus µ(D∩Cn) = µ(D)µ(Cn). Therefore D is independent from Cn for all
n ∈ N. Similarly, we get that for all finite J ⊂ N, the set D is independent from
⋂

j∈J Cj . Then by [9, page 26], the set D is independent from σ({Cn}n∈N).

Therefore D is independent from D0. Hence, µ(D∩D0) = µ(D0) = µ(D)µ(D0).
Since µ(D) 6= 0, we have µ(D0) = 0. Thus we have f · g = 0, but f ′ · g′ 6= 0,
which is a contradiction to tp(f, g) = tp(f ′, g′). �

Remark 5.5. [18, Theorem 1.3] gives another equivalent condition; i.e., let f
and g be two random variables valued on Polish spaces X and Y respectively,
where f is not a discrete random variable. If the probability space (Ω,B, µ) has
the saturation property for dist(f, g) while the standard Lebesgue unit interval
(

[0, 1],L, λ
)

does not, then Ω is Hoover-Keisler saturated.

Theorem 5.6. For every uncountable cardinal κ, we have that L1
(

([0, 1]κ, Aκ,

µκ), [0, 1]
)

|= ARV is κ-saturated and strongly κ-homogeneous. Moreover, it is

the unique model of ARV of density character κ with these properties.

Proof. The first part follows from Theorem 4.3 and Theorem 5.3. The unique-
ness follows from the following argument: for a complete theory T and κ ≥
Card(T ), by the standard back-and-forth argument any two κ-saturated models
of T of density character κ are isomorphic to each other. �
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