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ON THE PRESCRIBED MEAN CURVATURE PROBLEM ON

THE STANDARD n-DIMENSIONAL BALL

Aymen Bensouf

Abstract. In this paper, we consider the problem of existence of confor-
mal metrics with prescribed mean curvature on the unit ball of Rn, n ≥ 3.
Under the assumption that the order of flatness at critical points of pre-
scribed mean curvature function H(x) is β ∈]1, n − 2], we give precise
estimates on the losses of the compactness and we prove new existence
result through an Euler-Hopf type formula.

1. Introduction and main result

In this article, we consider the problem of existence of conformal scalar
flat metric with prescribed boundary mean curvature on the standard n-dim-
ensional ball. Let Bn be the unit ball in R

n, n ≥ 3, with Euclidean metric g0.
Its boundary will be denoted by Sn−1 and will be endowed with the standard
metric still denoted by g0. Let H : Sn−1 → R be a given function, we study

the problem of finding a conformal metric g = u
4

n−2 g0 such that Rg = 0 in
Bn and hg = H on Sn−1. Here Rg is the scalar curvature of the metric g in
Bn and hg is the mean curvature of g on Sn−1. This problem is equivalent to
solving the following nonlinear boundary value equation:

(P )

{

∆u = 0 in Bn

∂u

∂ν
+
n− 2

2
u =

n− 2

2
Hu

n
n−2 on Sn−1,

where ν is the outward unit vector with respect to the metric g0.
In general, there are several difficulties in facing this problem by means of

variational methods. Indeed, in virtue of the non-compactness of the embed-

ding H1(Bn) →֒ L
2(n−1)

n−2 (∂Bn), the Euler-Lagrange functional J associated to
the problem does not satisfy the Palais-Smale condition, and that leads to the
failure of the standard critical point theory. Moreover, besides the obvious
necessary condition that H must be positive somewhere, there are topological
obstructions of Kazdan-Warner type to solving (P ).
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In this paper, we study the case where the prescribed function H satisfies
some kind of flatness near its critical points. Roughly, it is assumed that there
exists a real number β such that in some geodesic normal coordinate system
centered at y, we have

(f)β H(x) = H(0) +
n−1
∑

i=1

bi|(xi)|
β +R(x),

where bi = bi(y) ∈ R \ {0}, ∀i = 1, . . . , n− 1,
∑n−1

i=1 bi 6= 0 and

[β]
∑

s=0

|∇sR(x)||x|s−β = o(1) as x tends to zero.

Here ∇s denotes all possible derivatives of order s and [β] is the integer part
of β.

Let

K =
{

y ∈ Sn−1, ∇H(y) = 0
}

, K+ =
{

y ∈ K,
n−1
∑

i=1

bi < 0
}

and
˜i(y) = ♯

{

bi, i = 1, . . . , n− 1, such that bi < 0
}

.

In [1], the authors proved that under condition (f)β , with n−2 < β < n−1,
(P ) has a solution provided

(1.1)
∑

y∈K+

(−1)n−1−ĩ(y) 6= 1.

We denote by Ξ the operator which associates to H the solution v of (P ) and
we extend the definition of Ξ to the case of weak solutions of (P ). Let

Kn−2 =
{

y ∈ K, β = β(y) = n− 2
}

.

For each p-tuple (yl1 , . . . , ylp) ∈
(

K+ ∩ Kn−2

)p

such that yli 6= ylj if i 6= j, we

associate the matrix M = (Mij) defined by






















Mii =
n− 2

n− 1
c̃1

−
∑n−1

k=1 bk
(

yli
)

H
(

yli
)n−1 , i ∈ {1, . . . , p},

Mij = −2
n−2

2 c1
G
(

yli , ylj
)

[

H
(

yli
)

H(ylj
)]

n−2

2

, i, j ∈ {1, . . . , p}, i 6= j,

where

c1 = c
2(n−1)

n−2

0

∫

R
n−1

dx
(

1 +
∣

∣x
∣

∣

2)n
2

, and c̃1 = c
2(n−1)

n−2

0

∫

R
n−1

|x1|
β

(

1 + |x|2
)n−1 dx.

Here G(q, ·) denotes the Green’s function for the operator Ξ with point q and
x1 is the component of x in some geodesic normal coordinate system.



ON THE PRESCRIBED MEAN CURVATURE PROBLEM 289

Let ρ = ρ(yl1 , . . . , ylp) be the least eigenvalue of M . It was the first pointed
out by Bahri [5] that when the interaction between the different bubbles is of the
same order as the self interaction. ρ plays a fundamental role in the existence of
solutions to problem like (P ). Please see [3], such kind of phenomenon appears
under (f)β condition when β = n− 2. We assume the following
(

A0

)

ρ(yl1 , . . . , ylp) 6= 0 for distinct points yl1 , . . . , ylp ∈ K+ ∩ Kn−2.

We now introduce the following set

C∞ :=

{

τp = (yl1 , . . . , ylp) ∈ (K+)p, p ≥ 1, s.t. yi 6= yj ∀i 6= j, and if

{yl1 , . . . , ylp} ∩ Kn−2 6= ∅, we denote by y
i1
, . . . , y

iq
all elements of

{yl1 , . . . , ylp} with β(yij ) = n− 2 for each j = 1, . . . , q and

ρ(yi1 , . . . , yiq ) > 0

}

.(1.2)

Our main result is the following:

Theorem 1.1. Assume that H is a C1-function satisfying (A0) and (f)β, with

1 < β ≤ n− 2.

If
∑

(yl1
,...,ylP

)∈C∞

(−1)P−1+
∑P

j=1
n−1+ĩ(ylj

) 6= 1,

then (P ) has at least one solution.

Our argument uses a careful analysis of the lack of compactness of the Euler
Lagrange functional J associated to the problem (P ). Namely, we study the
non-compact orbits of the gradient of J the so-called critical points at infinity
following the terminology of Bahri [5]. These critical points at infinity can be
treated as usual critical points once a Morse lemma at infinity is performed
from which we can derive just as in the classical Morse theory the difference of
topology induced by these noncompact orbits and compute their Morse index.
Such a Morse lemma at infinity is obtained through the construction of suit-
able pseudo-gradient for which the Palais-Smale condition is satisfied along the
decreasing flow lines, as long as these flow lines do not enter the neighborhood
of a finite numbers y1, . . . , yp of critical points of K such (y1, . . . , yp) ∈ C∞.

Similar Morse lemma at infinity has been established for the problem (P )
on the sphere Sn, n ≥ 3, under the hypothesis that the order of flatness at
critical points of H is β ∈ [n− 2, n− 1[, see [3].

The rest of this paper is organized as follows. In Section 2, we set up
the variational problem and we recall the expansion of the gradient of the
associated Euler-Lagrange functional near infinity. In Section 3, we characterize
the critical points at infinity of the associated variational problem. Section 4
is devoted to the proof of the main result Theorem 1.1.
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2. General framework and some known facts

2.1. Variational structure and lack of compactness

In this section, we recall the functional setting and the variational problem
and its main features. Problem (P ) has a variational structure. The Euler-
Lagrange functional is

J(u) =
(

∫

Sn−1

Hu
2(n−1)

n−2 dσg0

)

2−n
n−1

,

defined on H1(Bn) equipped with the norm

‖u‖2 =

∫

Bn

|∇u|2dvg0 +
n− 2

2

∫

Sn−1

u2dσg0 ,

where dvg0 and dσg0 denote the Riemannian measure on Bn and Sn−1 induced
by the metric g0. We denote by Σ the unit sphere of H1(Bn) and we set,

Σ+ = {u ∈ Σ, u ≥ 0}.

The exponent 2(n−1)
n−2 is critical for the Sobolev trace embedding H1(Bn) →

Lq(Sn−1). This embedding being not compact, the functional J does not satisfy
the Palais-Smale condition. In fact, let M be a Riemannian manifold and let
f :M → R. We say that f satisfies the Palais-Smale condition if every sequence
(uk) such that f(uk) is bounded and f ′(uk) → 0 has a convergent subsequence
(see [12]).

In order to characterize the sequences failing the Palais-Smale condition, we
need to introduce some notations.

We will use the notation x for the variables belonging to the unit ball Bn or
to the half space R

n
+ defined by R

n
+ := {x ∈ R

n, xn > 0}. We will also use the
notation x = (x′, xn) for x ∈ R

n
+. It will be convenient to perform some stereo-

graphic projection in order to reduce the above problem to R
n
+. Let D

1,2(Rn
+)

denote the completion of C∞
c (Rn

+), with respect to the Dirichlet norm. The

stereographic projection πq through an appropriate point q ∈ Sn−1 induces an
isometry i : H1(Bn) −→ D1,2(Rn

+) according to the following formula

iu(x) =
( 2

|x′|2 + (xn + 1)2

)

n−2

2

u
( 2x′

|x′|2 + (xn + 1)2
,

|x′|2 + xn − 1

|x′|2 + (xn + 1)2

)

,

where x′ = (x1, . . . , xn−1). In particular, we can check that the following
relations hold true for every u ∈ H1(Bn),

∫

Bn

|∇u|2 +
n− 2

2

∫

Sn−1

u2 =

∫

R
n
+

|∇iu|2 and

∫

Sn−1

|u|2
(n−1)

n−2 =

∫

∂Rn
+

|iu|2
(n−1)

n−2 .
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In the sequel, we will identify the function H and its composition with the
stereographic projection πq. We will also identify a point x of Bn and its image
by πq. These facts will be assumed as understood in the sequel.

For a ∈ ∂Rn
+ and λ > 0, we define the function:

(2.1) δ(a,λ)(x) = c0
λ

n−2

2

(

(1 + λxn)2 + λ2|x′ − a′|2
)

n−2

2

,

where x ∈ R
n
+, and c̄ is chosen such that δa,λ satisfies the following equation,







∆u = 0 and u > 0 in R
n
+

−
∂u

∂xn
= u

n
n−2 on ∂Rn

+.

So, these bubbles δ(a,λ) are the unique solution of the Yamabe problem on R
n
+,

see for example [13]. Set

(2.2) δ̃a,λ = i−1(δ(a,λ)).

For ε > 0, p ∈ N, let us define

V (p, ε) =



































u ∈ Σ s.t. ∃a1, . . . , ap ∈ Sn−1, ∃α1, . . . , αp > 0,

∃λ1, . . . , λp > ε−1 with
∥

∥

∥
u−

p
∑

i=1

αiδ̃(ai,λi)

∥

∥

∥
< ε, εij < ε, ∀ i 6= j,

and
∣

∣

∣

α
2

n−2

i H(ai)

α
2

n−2

j H(aj)
− 1
∣

∣

∣
< ε, ∀i, j = 1, . . . , p,

where

εij =
(λi
λj

+
λj
λi

+ λiλj |ai − aj |
2
)

2−n
2

.

If u is a function in V (p, ε), one can find an optimal representation, following
the ideas introduced in Proposition 5.2 of [5] (see also pages 348–350 of [6]).
Namely we have:

Proposition 2.1. For any p ∈ N, there is εp > 0 such that if ε ≤ εp and

u ∈ V (p, ε), then the following minimization problem

min
αi>0,λi>0,ai∈Sn−1

∥

∥

∥
u−

p
∑

i=1

αiδ̃(ai,λi)

∥

∥

∥

has a unique solution (α, λ, a) up to a permutation.

In particular, we can write u as follows

u =

p
∑

i=1

αiδ̃(ai,λi) + v,
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where v belongs to H1(Bn) and it satisfies the following:

(V0) :
〈

v, ψ
〉

= 0 for ψ ∈ {δ̃i,
∂δ̃i
∂λi

,
∂δ̃i
∂ai

, i = 1, . . . , p}

here δ̃i = δ̃(ai,λi) and 〈·, ·〉 denotes the scalar product defined on H1(Bn) by

〈u, v〉 =

∫

Bn

∇u∇v dvg0 +
n− 2

2

∫

Sn−1

uv dσg0 .

The behavior of sequences failing the Palais-Smale condition can be char-
acterized taking into account the uniqueness result of Li and Zhu [13] and
following the ideas introduced in [2]. We have the following proposition:

Proposition 2.2. Let (uk) be a sequence in Σ+ such that J(uk) is bounded and

∂J(uk) goes to zero. Then there exist an integer p ∈ N, a sequence (εk) > 0,
εk tends to zero, and an extracted subsequence of uk’s, again denoted (uk) such
that uk ∈ V (p, εk).

Now arguing as in [6] (pages 326, 327 and 334), the following Morse lemma
allows us to get rid of the v-contributions and shows that it can be neglected
with respect to the concentration phenomenon.

Proposition 2.3. There is a C1-map which to each (αi, ai, λi) such that
∑p

i=1 αiδ̃(ai,λi) belongs to V (p, ε) associates v = v(α, a, λ) such that v is unique

and satisfies:

J
(

p
∑

i=1

αiδ̃(ai,λi) + v
)

= min
v∈(V0)

{

J
(

p
∑

i=1

αiδ̃(ai,λi) + v
)}

.

Moreover, there exists a change of variables v − v → V such that

J
(

p
∑

i=1

αiδ̃(ai,λi) + v
)

= J
(

p
∑

i=1

αiδ̃(ai,λi) + v
)

+ ‖ V ‖2 .

We notice that in the V variable, we define a pseudo-gradient by setting

∂V

∂s
= −µV,

where µ is a very large constant. Then at s = 1, V (s) = e−µsV (0) will be as
small as we wish. This shows that, in order to define our deformation, we can
work as if V was zero. The deformation will extend immediately with the same
properties to a neighborhood of zero in the V variable.

The following proposition gives precise estimates of v.

Proposition 2.4 ([3]). There exists c > 0 such that the following holds

‖v‖ ≤ c

p
∑

i=1

[

1

λ
n
2

i

+
1

λβi
+

|∇H(ai)|

λi
+

(logλi)
n

2(n−1)

λ
n
2

i

]



ON THE PRESCRIBED MEAN CURVATURE PROBLEM 293

+ c



















∑

k 6=r

ε
n

2(n−2)

k r

(

log ε−1
kr

)
n

2(n−1)

if n ≥ 4

∑

k 6=r

εk r

(

log ε−1
kr

)
1
2

if n = 3.

At the end of this section, we give the following definition extracted from
([5], definition 09; see also [6] pages 333–334).

Definition 2.1. A critical point at infinity of J on Σ+ is a limit of a flow line
u(s) of the equation

{

∂u
∂s

= −∂J(u(s))

u(0) = u0

such that u(s) remains in V (p, ε(s)) for s ≥ s0. Here, w is either zero or
a solution of (P ) and ε(s) is some positive function tending to zero when
s→ +∞. Using Proposition 2.1, u(s) can be written as:

u(s) =

p
∑

i=1

αi(s)δ(ai(s), λi(s))
+ v(s).

Denoting α̃i := lim
s→+∞

αi(s), ỹi := lim
s→+∞

ai(s), we denote by

p
∑

i=1

α̃iδ(ỹi,∞) or (ỹ1, . . . , ỹp)∞

such a critical point at infinity.

2.2. Expansion of the gradient of the functional

In this subsection, we recall the expansion of the gradient of the functional
J in V (p, ε), p ≥ 1. These expansions are extracted from [3].

Proposition 2.5 ([3]). Let u =
∑p

j=1 αj δ̃j ∈ V (p, ε). For every i, 1 ≤ i ≤ p,
we have the following expansions

(i)

〈

∂J(u), λi
∂δ̃i
∂λi

〉

= −2c2J(u)
∑

i6=j

αjλi
∂εij
∂λi

+ o

(

∑

i6=j

εij

)

+ o

(

1

λi

)

,

where c2 = c
2(n−1)

n−2

0

∫

Rn−1

dy
(

1+|y|2
)n

2
.

(ii) If ai ∈ B(yli , ρ), yli ∈ K with 1 < β ≤ n− 2 and ρ is a positive constant

small enough, we have

〈

∂J(u), λi
∂δ̃i
∂λi

〉

= 2J(u)

[

− c2
∑

j 6=i

αjλi
∂εij
∂λi

+
n− 2

2(n− 1)
c

2(n−1)

n−2

0 β
αi

H(ai)

1

λβi

n−1
∑

k=1

bk
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×

∫

R
n−1

sign
(

xk+λi(ai− yji)k

)∣

∣

∣
xk+λi(ai−yji)k

∣

∣

∣

β−1 xk
(1+|x|2)n−1

dx

+ o
(

∑

j 6=i

εij +

p
∑

j=1

1

λβj

)

]

.(2.3)

Furthermore, if λi|ai − yji | < δ for δ very small, we then have

〈

∂J(u), λi
∂δ̃i
∂λi

〉

= 2J(u)

[

n− 2

2(n− 1)
β c3

αi

H(ai)

∑n−1
k=1 bk

λβi
− c2

∑

j 6=i

αjλi
∂εij
∂λi

+ o
(

∑

j 6=i

εij +

p
∑

j=1

1

λβj

)

]

,(2.4)

where c3 = c
2(n−1)

n−2

0

∫

Rn−1

|x1|
β

(1+|x|2)n−1dx.

Proposition 2.6 ([3]). Let u =
∑p

j=1 αj δ̃j ∈ V (p, ε) and let i, 1 ≤ i ≤ p. We

have the following expansions:
(i)

〈

∂J(u),
1

λi

∂δ̃i
∂ai

〉

= − c5(J(u))
2n−3

n−2 α
n

n−2

i

∇H(ai)

λi
+O

(

∑

i6=j

1

λi

∣

∣

∂εij
∂ai

∣

∣

)

+ o

(

∑

i6=j

εij +
1

λi

)

,

(ii) If ai ∈ B(yji , ρ), yji ∈ K with 1 < β ≤ n− 2, we have

〈

∂J(u),
1

λi

∂δ̃i
∂(ai)k

〉

= −2(n−2)c
2(n−1)

n−2

0 α
n

n−2

i (J(u))
2n−3

n−2
1

λβi

∫

R
n−1

bk
∣

∣xk+λi(ai−yji)k
∣

∣

β xk
(1+|x|2)n

dx

+ o

(

∑

i6=j

εij

)

+ o

( p
∑

i=1

1

λβi

)

+O

(

∑

i6=j

1

λi

∣

∣

∂εij
∂ai

∣

∣

)

,

where (ai)k is the kth component of ai in some geodesic normal coordinates

system and c5 =
∫

Rn−1

dy
(

1+|y|2
)n−1 .

3. Characterization of the critical points at infinity

This section is devoted to the characterization of the critical points at infinity
in V (p, ε), p ≥ 1, under β-flatness condition with 1 < β ≤ n − 2. This
characterization is obtained through the construction of a suitable pseudo-
gradient at infinity for which the Palais-Smale condition is satisfied along the
decreasing flow-lines as long as these flow-lines do not enter in the neighborhood
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of finite number of critical points yi, i = 1, . . . , p of H such that (y1, . . . , yp) ∈
C∞.

Now we introduce the following main result.

Theorem 3.1. Assume that H satisfies (A0) and (f)β, 1 < β ≤ n− 2.
Let β := max{β(y)/y ∈ K}. For p ≥ 1, there exists a pseudo-gradient W in

V (p, ε) so that the following holds:

There exists a constant c > 0 independent of u =
∑p

i=1 αiδ̃(aiλi) ∈ V (p, ε)
such that

(i)
〈

∂J(u),W (u)
〉

≤ −c

(

∑p
i=1

1

λβi
+

p
∑

i=1

| ∇H(ai) |

λi
+
∑

j 6=i

εij

)

.

(ii)
〈

∂J(u+ v),W (u) +
∂v

∂(αi, ai, λi)
(W (u))

〉

≤ − c

( p
∑

i=1

1

λβi
+

p
∑

i=1

| ∇H(ai) |

λi
+
∑

j 6=i

εij

)

.

Furthermore, |W | is bounded and the only case where the maximum of the λi’s
is not bounded is when ai ∈ B(yli , ρ) with yli ∈ K, ∀i = 1, . . . , p, (yl1 , . . . , ylp) ∈
C∞.

We will prove Theorem 3.1 at the end of the section. Now we state two
results which deal with two specific cases of Theorem 3.1. Let

V1(p, ε)=
{

u=

p
∑

i=1

αiδ̃i∈V (p, ε) s.t. ai∈ B(yli , ρ), yli ∈ K\Kn−2 ∀i=1, . . . , p
}

.

and

V2(p, ε)=
{

u=

p
∑

i=1

αiδ̃i∈ V (p, ε) s.t. ai∈ B(yli , ρ), yli ∈ Kn−2 ∀i=1, . . . , p
}

.

We then have:

Proposition 3.1 (See [3], Proposition 3.4). For p ≥ 1 there exists a pseudo-

gradient W2 in V2(p, ε) such that ∀u =
∑p

i=1 αiδ̃i ∈ V2(p, ε), we have

〈

∂J(u),W2(u)
〉

≤ −c

( p
∑

i=1

1

λn−2
i

+
∑

i6=j

εij +

p
∑

i=1

|∇H(ai)|

λi

)

,

where c is a positive constant independent of u. Furthermore, we have |W2| is
bounded and the only case where the maximum of λ′is is not bounded is when

ai ∈ B(yli , ρ), yli ∈ K+, ∀ i = 1, . . . , p, with ρ(yl1 , . . . , ylp) > 0.

Proposition 3.2. For p ≥ 1, there exists a pseudo-gradient W1 in V1(p, ε) so
that the following holds:
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There exists c > 0 independent of u =
∑p

i=1 αiδ̃i ∈ V1(p, ε) such that

〈

∂J(u),W1(u)
〉

≤ −c

( p
∑

i=1

1

λβi
+
∑

i6=j

εij +

p
∑

i=1

|∇H(ai)|

λi

)

.

Furthermore |W1| is bounded and the only case where the maximum of the

λi’s is not bounded is when ai ∈ B(yli , ρ) with yli ∈ K+, ∀i = 1, . . . , p, and
yi 6= yj ∀ i 6= j.

Observe that in V1(p, ε), the interaction of two bubbles is negligible with
respect to the self interaction. Similar phenomena occur for the scalar curvature
problem, see [10], so the proof of Proposition 3.2 is similar to the corresponding
statement in [10]. Before giving the proof of Theorem 3.1, we state the following
notations extracted from [3].

LetM1 be a fixed positive constant large enough and let u =
∑p

i=1 αiδ̃(ai,λi)

∈ V (p, ε) such that ai ∈ B(ai, ρ), yli ∈ K, ∀ i = 1, . . . , p. For any index i,
1 ≤ i ≤ p, we define the following vector fields

(3.1) Zi(u) = αiλi
∂δ̃(ai,λi)

∂λi

and
(3.2)

Xi = αi

n−1
∑

k=1

1

λi

∂δ̃(ai,λi)

∂(ai)k

∫

R
n−1

bk
|xk + λi(ai − yli)k|

β
i

(1 + λi|(ai − yli)k|)
βi−1

xk
(1 + |x|2)n+1

dx.

We claim that Xi is bounded. Indeed, the claim is trivial if λi|ai − yli | ≤ M1.
If λi|ai− yl

i
| > M1, for any k, 1 ≤ k ≤ n− 1, such that λi|(ai − yli)k| >

M1√
n−1

,

we have the following estimate

∫

R
n

∣

∣xk + λi(ai − yli)k
∣

∣

βi
xk

(1 + |x|2)n+1
dx = c(signeλi(ai − yli)k)(λi|(ai − yli)k|)

βi−1

× (1 + o(1)).(3.3)

Hence, our claim follows. Next, we will say that

i ∈ L1 if λi|ai − yli | ≤M1,

i ∈ L2 if λi|ai − yl
i
| > M1,

and we will denote by ki, the index satisfying

|(ai − yli)ki | = max
1≤k≤n−1

|(ai − y
li
)k|.(3.4)

It is easy to see that if i ∈ L2, then λi|(ai − yli)ki | >
M1√
n−1

.

Now, we introduce the following two lemmas.



ON THE PRESCRIBED MEAN CURVATURE PROBLEM 297

Lemma 3.1. Let u =
∑p

i=1 αiδ̃(ai,λi) ∈ V (p, ε) such that ai ∈ B(yli , ρ), yli ∈
K, ∀ i = 1, . . . , p. We then have

〈∂J(u), Zi(u)〉 = − 2c2J(u)
∑

j 6=i

αiαj
∂εij
∂λi

+O

(

1

λβi

i

)

+

[

O

(

|(a
i
− yli)ki |

βi−2

λ2i

)

, if i ∈ L2

]

+ o
(

∑

j 6=i

εij

)

+ o

( p
∑

j=1

1

λ
βj

j

)

,

where ki is defined in (3.4).

Proof. Using Proposition 2.5, we have

〈∂J(u), Zi(u)〉 = − 2c2J(u)
∑

j 6=i

αiαjλi
∂εij
∂λi

+
n− 2

2(n− 1)
c

2(n−1)

n−2

0 β
α2
i

H(ai)

×

∫

R
n−1

signe
(

xk + λi(ai − yji)k

)
∣

∣

∣
xk + λi(ai − yji)k

∣

∣

∣

β−1

×
xk

(1 + |x|2)n−1
dx+ o

(

∑

j 6=i

εij

)

+ o

( p
∑

j=1

1

λ
βj

j

)

.

Observe that for k ∈ {1, . . . , n− 1}, if λi|(ai − yli)k| >
M1√
n−1

, we have

∫

R
n−1

signe
(

xk + λi(ai − yji)k

)

∣

∣xk + λi(ai − yli)k
∣

∣

βi−1
xk

(1 + |x|2)n−1
dx

= c signe
(

λi(ai − yji)k

)

(λi|(ai − yli)k|)
βi−2(1 + o(1)),(3.5)

taking M1 large enough. If not, we have

∫

R
n−1

∣

∣xk + λi(ai − yli)k
∣

∣

βi−1
|xk|

(1 + |x|2)n−1
dx = O(1).

Using the fact that ki defined in (3.4) satisfies λi|(ai−yli)ki | >
M1√
n−1

, if i ∈ L2,

Lemma 3.1 follows. �

Lemma 3.2. For u =
∑p

i=1 αiδ̃(ai,λi) ∈ V (p, ε) such that ai ∈ B(yli , ρ), yli ∈
K, ∀ i = 1, . . . , p, we have

〈∂J(u), Xi(u)〉 ≤ O

(

∑

j 6=i

1

λi
|
∂εij
∂ai

|

)

+O

[(

1

λβi

i

)

, if i ∈ L1

]

+

[

− c

(

1

λβi

i

+
|(a

i
− yli)ki |

βi−1

λi

)

, if i ∈ L2

]

+ o

( p
∑

j=1

1

λ
βj

j

)

,

where ki is defined in (3.4).
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Proof. Using Proposition 2.6, we have

〈∂J(u), Xi(u)〉

= − 2(n− 2)c
2(n−1)

n−2

0 α
n

n−2

i (J(u))
2n−3

n−2
1

λi
βi

×
n−1
∑

k=1

(

∫

R
n−1

bk
|xk + λi(ai − yl

i
)k|βi

(1 + λi|(ai − yli)k|)
(βi−1)/2

xk
(1 + |x|2)n

dx

)2

+O

(

∑

j 6=i

1

λi
|
∂εij
∂ai

|

)

+ o

( p
∑

j=1

1

λ
βj

j

)

≤ − c
1

λi
βi

(

∫

R
n−1

bki

|xk + λi(ai − yl
i
)ki |

βi

(1 + λi|(ai − yli)ki |)
(βi−1)/2

xki

(1 + |x|2)n
dx

)2

+O

(

∑

j 6=i

1

λi
|
∂εij
∂ai

|

)

+ o

( p
∑

j=1

1

λ
βj

j

)

.(3.6)

Using (3.3) and the fact that λi|(ai − yli)ki | >
M1√
n−1

, if i ∈ L2, Lemma 3.2

follows. �

Proof of Theorem 3.1. In order to complete the construction of the pseudo-
gradient W suggested in Theorem 3.1, it only remains (using Propositions 3.1
and 3.2) to focus attention at the two following subsets of V (p, ε).

Subset 1. We consider here the case of u =
∑p

i=1 αiδ̃(aiλi) =
∑

i∈I1
αiδ̃(aiλi)

+
∑

i∈I2
αiδ̃(aiλi) such that

I1 6= ∅, I2 6= ∅,
∑

i∈I1

αiδ̃(aiλi) ∈ V1(♯I1, ε) and
∑

i∈I2

αiδ̃(aiλi) ∈ V2(♯I2, ε).

Without loss of generality, we can assume that

λ1 ≤ · · · ≤ λp.

We distinguish three cases.

Case 1. u1 :=
∑

i∈I1
αiδ̃(aiλi) 6∈ V 1

1 (♯I1, ε) = {u =
∑♯I1

j=1 αj δ̃(aj ,λj), aj ∈

B(ylj , ρ), ylj ∈ K+ ∀ j = 1, . . . , ♯I1 and ylj 6= ylk∀j 6= k}.

Let ˜W1 be the pseudo-gradient on V (p, ε) defined by ˜W1(u) = W1(u1),
where W1 is the vector filed defined by Proposition 3.2 in V1(♯I1, ε). Note
that if u1 6∈ V 1

1 (♯I1, ε), then the pseudo-gradient W1(u1) does not increase the
maximum of the λi’s, i ∈ I1. Using Proposition 3.2, we have

〈

∂J(u), ˜W1(u)
〉

≤ − c

(

∑

i∈I1

1

λβi

i

+
∑

j 6=i,i,j∈I1

εij +
∑

i∈I1

|∇H(ai)|

λi

)

+O

(

∑

i∈I1,j∈I2

εij

)

.(3.7)
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An easy calculation yields

(3.8) εij = O

(

1

(λiλj)
n−2

2

)

= o

(

1

λβi

i

)

+ o

(

1

λ
βj

j

)

.

Fix i0 ∈ I1, we denote by

J1 = {i ∈ I2 s.t. λn−2
i ≥

1

2
λ
βi0

i0
} and J2 = I2 \ J1.

Using (3.7) and (3.8), we find that

〈

∂J(u), ˜W1(u)
〉

≤ − c

(

∑

i∈I1∪J1

1

λβi

i

+
∑

i∈I1

|∇H(ai)|

λi
+
∑

j 6=i∈I1

εij

)

+ o

( p
∑

i=1

1

λβi

i

)

.(3.9)

From another part, by Lemma 3.1 we have
〈

∂J(u),
∑

i∈J1

−2iZi(u)
〉

≤ c
∑

j 6=i ,i∈J1

2iλi
∂εij
∂λi

+O

(

∑

i∈J1

1

λβi

i

)

+O

(

∑

i∈J1∩L2

|(ai − yli)ki |
βi−2

λ2i

)

.(3.10)

Observe that using a direct calculation, we have

(3.11) λi
∂εij
∂λi

≤ −c εij , if λi ≥ λj or λi ∼ λj or |ai − aj | ≥ δ0 > 0.

Since for i < j, we have

(3.12) 2iλi
∂εij
∂λi

+ 2jλj
∂εij
∂λj

≤ −c εij ,

and for i ∈ J1 and j ∈ J2, we have λj ≤ λi. So, we obtain λi
∂εij
∂λi

≤ −c εij .
These estimates yields

〈

∂J(u),
∑

i∈J1

−2iZi(u)
〉

≤ − c
∑

j 6=i ,i∈J1, j∈J1∪J2

εij +O

(

∑

i∈J1

1

λβi

i

)

+O

(

∑

i∈J1∩L2

|(ai − yli)ki |
βi−2

λ2i

)

+O

(

∑

i∈J1, j∈I1

εij

)

.

It is easy to see that for any index i ∈ L2, we have

|(ai − yli)ki |
βi−2

λ2i
≤

√
n− 1

M1

|(ai − yli)ki |
βi−1

λi
,
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where ki is defined in (3.4) and M1 large enough. Thus, we derive that

(3.13)
|(ai − yli)ki |

βi−2

λ2i
= o

(

|(ai − yli)ki |
βi−1

λi

)

for any i ∈ L2.

Let m1 > 0 small enough, using Lemma 3.2, (3.13) and (3.8), we get

〈

∂J(u),
∑

i∈J1

−2iZi(u) +m1

∑

i∈J1∩L2

Xi(u)
〉

≤ − c

(

∑

j 6=i ,i∈J1, j∈J1∪J2

εij +
∑

i∈J1

|∇H(ai)|

λi

)

+O

(

∑

i∈J1

1

λβi

i

)

+ o
(

p
∑

i=1

1

λβi

i

)

,

and by (3.9) we obtain

〈

∂J(u), ˜W1(u) +m1

(

∑

i∈J1

−2iZi(u) +m1

∑

i∈J1∩L2

Xi(u)

)

〉

≤ − c

(

∑

i∈I1∪J1

1

λβi

i

+
∑

i6=j∈I1

εij+
∑

j 6=i ,i∈J1, j∈J1∪J2

εij+
∑

i∈I1∪J1

|∇H(ai)|

λi

)

+ o
(

p
∑

i=1

1

λβi

i

)

.(3.14)

We need to add the remainder indices i ∈ J2. Note that ũ :=
∑

j∈J2
αj δ̃j ∈

V2(♯J2, ε). Thus, using Proposition 3.1, we apply the associated vector field

which we will denote ˜W2. We then have the following estimate

〈

∂J(u), ˜W2(u)
〉

≤ − c

(

∑

j∈J2

1

λ
βj

j

+
∑

i6=j, i,j∈J2

εij +
∑

j∈J2

|∇H(aj)|

λj

)

+O

(

∑

j∈J2, i∈J1

εij

)

+ o
(

p
∑

i=1

1

λβi

i

)

,(3.15)

since |ai − aj | ≥ ρ for j ∈ J2 and i ∈ I1.

Let in this case W = ˜W1 +m1

(

˜W2 +
∑

i∈J1
−2iZi +m1

∑

i∈J1∩L2
Xi

)

.

From (3.14) and (3.15) we obtain

〈

∂J(u),W (u)
〉

≤ −c

( p
∑

i=1

1

λβi

i

+

p
∑

i=1

|∇H(ai)|

λi
+
∑

i6=j

εij

)

.

Case 2. u1 :=
∑

i∈I1
αiδ̃(aiλi) ∈ V 1

1 (♯I1, ε) and u2 :=
∑

i6∈I2
αiδ̃(aiλi) 6∈

V 1
2 (♯I2, ε) := {u =

∑♯I2
j=1 αj δ̃(aj ,λj), aj ∈ B(ylj , ρ), ylj ∈ K+, ∀j = 1, . . . , ♯I2

and ρ(yl1 , . . . , y♯I2) > 0}.
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Since u2 ∈ V2(♯I2, ε), by Proposition 3.1, we can apply the associated vector
field which we will denote V1. We get

〈

∂J(u), V1(u)
〉

≤ − c

(

∑

i∈I2

1

λβi

i

+
∑

i∈I2

|∇H(ai)|

λi
+

∑

i6=j, i,j∈I2

εij

)

+O

(

∑

i∈I2, j∈I1

εij

)

.(3.16)

Observe that V1(u) does not increase the maximum of the λi’s, i ∈ I2, since
u2 6∈ V 1

2 (♯I2, ε). Fix i0 ∈ I2 and let

˜J1 = {i ∈ I1 s.t. λβi

i ≥
1

2
λn−2
i0

} and˜J2 = I1 \˜J1.

Using (3.16) and (3.8), we get
〈

∂J(u), V1(u)
〉

≤ − c

(

∑

i∈I2∪J̃1

1

λβi

i

+
∑

i∈I2

|∇H(ai)|

λi
+

∑

i6=j, i,j∈I2

εij

)

+ o
(

p
∑

i=1

1

λβi

i

)

.(3.17)

We need to add the indices i, i ∈ ˜J2. Let ũ :=
∑

j∈J̃2
αj δ̃(ajλj), since ũ ∈

V1(♯ ˜J2, ε), we can apply the associated vector field giving by Proposition 3.1.
Let V2 be this vector field. By Proposition 3.2, we have

〈

∂J(u), V2(u)
〉

≤ − c

(

∑

j∈J̃2

1

λ
βj

j

+
∑

j∈J̃2

|∇H(aj)|

λj
+

∑

i6=j, i,j∈J̃2

εij

)

+O

(

∑

j∈J̃2, i6∈J̃2

εij

)

.

Observe that I1 =˜J1 ∪˜J2 and we are in the case where ∀ i 6= j ∈ I1, we have
|ai − aj | ≥ ρ. Thus by (3.8), we get

O

(

∑

j∈J̃2,i6∈J̃2

εij

)

= o
(

p
∑

i=1

1

λβi

i

)

,

and hence
〈

∂J(u), V1(u) + V2(u)
〉

≤ −c

( p
∑

i=1

1

λβi

i

+
∑

i∈I2∪J̃2

|∇H(ai)|

λi
+
∑

i6=j

εij

)

.

Let in this case W = V1 + V2 +m1

∑

i∈J̃1
Xi(u), m1 small enough.

Using the above estimate and Lemma 3.2, we find that

〈

∂J(u),W (u)
〉

≤ −c

( p
∑

i=1

1

λβi

i

+

p
∑

i=1

|∇H(ai)|

λi
+
∑

i6=j

εij

)

.
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Case 3. u1 ∈ V 1
1 (♯I1, ε) and u2 ∈ V 1

2 (♯I2, ε).

Let˜V1 (respectively˜V2) be the pseudo-gradient in V (p, ε) defined by˜V1(u) =

W1(u1) (respectively˜V2(u) =W2(u2)) whereW1 (respectivelyW2) is the vector
field defined by Proposition 3.2 (respectively 3.1) in V 1

1 (♯I1, ε) (respectively
V 1
2 (♯I2, ε)) and let in this case

W =˜V1 +˜V2.

Using Proposition 3.1, Proposition 3.2 and (3.8) we get

〈

∂J(u),W (u)
〉

≤ −c

( p
∑

i=1

1

λβi

i

+

p
∑

i=1

|∇H(ai)|

λi
+
∑

i6=j

εij

)

.

Notice that in the first and second cases, the maximum of the λi’s, 1 ≤ i ≤ p,
is a bounded function and hence the Palais-Smail condition is satisfied along
the flow-lines of W . However in the third case all the λi’s, 1 ≤ i ≤ p, will
increase and goes to +∞ along the flow-lines generated by W .

Subset 2. We consider the case of u =
∑p

i=1 αiδ̃i ∈ V (p, ε) such that there
exist ai satisfying ai /∈ ∪y∈KB(y, ρ).

In this region, the construction of the pseudo-gradient W proceeds exactly
as the proof of (Theorem 3.2, of subset 2) of [3].

Finally, observe that our pseudo-gradient W in V (p, ε) satisfies claim (i)

of Theorem 3.1 and it is bounded, since ||λi
∂δ̃(ai,λi

)

∂λi
|| and || 1

λi

∂δ̃(ai,λi
)

∂ai
|| are

bounded. From the definition ofW , the λi’s, 1 ≤ i ≤ p decrease along the flow-
lines of W as long as these flow-lines do not enter in the neighborhood of finite
number of critical points yli , i = 1, . . . , p, of K such that (yl1 , . . . , ylp) ∈ C∞.

Now, arguing as in Appendix 2 of [6], see also Appendix B of [9], claim (ii)
of Theorem 3.1 follows from (i) and Proposition 2.4. This complete the proof
of Theorem 3.1. �

Corollary 3.1. Let p ≥ 1. The critical points at infinity of J in V (p, ε)
correspond to

(yl1 , . . . , ylp)∞ :=

p
∑

i=1

1

H(yli)
n−2

2

δ̃(yli
,∞),

where (yl1 , . . . , ylp) ∈ C∞. Moreover, such a critical point at infinity has an

index equal to i(yl1 , . . . , ylp)∞ = p− 1 +
∑p

i=1 n− 1−˜i(yli).

4. Proof of Theorem 1.1

We prove the existence result by contradiction. Assume that J has no critical
point in Σ+. It follows from Corollary 3.1 that the critical points at infinity of
the associated variational problem are in one to one correspondence with the
elements of C∞ defined in (1.2).

Notice that, just like for usual critical points, it is associated to each crit-
ical point at infinity w∞ of J stable and unstable manifolds W∞

s (w∞) and
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W∞
u (w∞), (see [6], pages 356–357). These manifolds can be easily described

once a finite dimensional reduction like the one we performed in Section 3 is
established.

For any w∞ = (yi1 , . . . , yip) ∈ C∞, let c(w)∞ = Sn

(
∑p

j=1
1

H(ylj
)
n−2
2

)
2
n

denote the associated critical value. Here, we choose to consider a simplified
situation, where for any w∞ 6= w

′

∞, c(w)∞ 6= c(w
′

)∞ and thus order the
c(w)∞’s, w∞ ∈ C∞ as

c(w1)∞ < · · · < c(wk0
)∞.

By using a deformation lemma (see Proposition 7.24 and Theorem 8.2 of [8]),
we know that if c(wk−1)∞ < a < c(wk)∞ < b < c(wk+1)∞, then

Jb ≃ Ja ∪W
∞
u (wk)∞,(4.1)

where Jb = {u ∈ Σ+, J(u) ≤ b} and ≃ denotes retracts by deformation.
We apply the Euler-Poincaré characteristic of both sides of (4.1), we find

that

χ(Jb) = χ(Ja) + (−1)i(wk)∞ ,(4.2)

where i(wk)∞ denotes the index of the critical point at infinity (wk)∞. Let

b1 < c(w1)∞ = min
u∈Vη(Σ+)

J(u) < b2 < c(w2)∞ < · · · < bk0
< c(wk0

)∞ < bk0+1.

Since we have assumed that (P ) has no solution, Jbk0+1
is a retract by defor-

mation of Σ+. Therefore χ(Jbk0+1
) = 1, since Σ+ is a contractible set. Now

using (4.2), we derive after recalling that χ(Jb1) = χ(∅) = 0,

1 =

k0
∑

j=1

(−1)i(wj)∞ .(4.3)

Hence if (4.3) is violated, J has a critical point in Σ+.
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