DOI QR코드

DOI QR Code

Study on Measuring Two Dimensional Birefringence Distribution of Ajinomoto Build-up Film by Using Polarimetry and Process Optimization

편광분석을 이용한 2차원 위상지연 분포 측정과 ABF 필름의 공정 최적화에 관한 연구

  • Lee, Dae Hee (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Choi, Se Jin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Bang, Ju Yup (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kim, Dong Jin (Samsung Electro Mechanics) ;
  • Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
  • 이대희 (부산대학교 유기소재시스템공학과) ;
  • 최세진 (부산대학교 유기소재시스템공학과) ;
  • 방주엽 (부산대학교 유기소재시스템공학과) ;
  • 김동진 (삼성전기(주)) ;
  • 김한성 (부산대학교 유기소재시스템공학과)
  • Received : 2015.12.24
  • Accepted : 2016.02.14
  • Published : 2016.02.29

Abstract

Polarimetry is a non-destructive technique that measures the degree of rotation of polarized light passing through an optically active material. Optical activity is determined by various factors, including intrinsic optical properties and residual stress. Thus, polarimetry can be used in various fields. In this study, polarimetry was used to evaluate the two-dimensional spatial uniformity of optical birefringence in an Ajinomoto build-up film. This analysis can predict the optimal cure condtitions of the film, which creates a uniform phase retardation distribution.

Keywords

References

  1. I. An, "Ellipsometry", Hanyang University Press, 2000, pp.49-54.
  2. D. H. Goldstein, "Polarized Light", CRC Press, 2010.
  3. C.-J. Yu, C.-H. Hung, K.-C. Hsu, and C. Chou, "Phase-shift Imaging Ellipsometer for Measuring Thin-film Thickness", Microelectronics Reliability, 2015, 55, 352-357. https://doi.org/10.1016/j.microrel.2014.10.014
  4. C.-J. Yu, C.-H. Hung, K.-C. Hsu, and C. Chou, "Phase-Shift Imaging Polarimetry for Measuring the Physical Parameters of a Twisted Nematic Liquid Crystal Device without Periodic Ambiguity", J. Display Technol., 2014, 10, 758-765. https://doi.org/10.1109/JDT.2014.2319174
  5. M. J. Abuleil and I. Abdulhalim, "Birefringence Measurement Using Rotating Analyzer Approach and Quadrature Cross Points", Appl. Opt., 2014, 53, 2097-2104. https://doi.org/10.1364/AO.53.002097
  6. W. Urbanczyk, K. Pietraszkiewicz, and W. A. Wozniak, "Novel Bifunctional Systems for Measuring the Refractive Index Profile and Residual Stress Birefringence in Optical Fibers and Preforms", Opt. Eng., 1992, 31, 491-499. https://doi.org/10.1117/12.56099
  7. K. H. Kim, H. H. Cho, H. Ito, and T. Kikutani, "Fiber Structure Development in High-speed Melt Spinning of Poly(trimethylene terephthalate)(PTT)-On-line Measurement of Birefringence", J. Polym. Sci. Part B: Polym. Phys., 2008, 46, 847-856. https://doi.org/10.1002/polb.21415
  8. S. Y. Berezhna, I. V. Berezhnyy, and M. Takashi, "Dynamic Photometric Imaging Polarizer-sample-analyzer Polarimeter: Instrument for Mapping Birefringence and Optical Rotation", JOSA A, 2001, 18, 666-672.
  9. Y. F. Chao, K. Y. Lee, and Y. De Lin, "Analytical Solutions of the Azimuthal Deviation of a Polarizer and an Analyzer by Polarizer-sample-analyzer Ellipsometry", Appl. Opt., 2006, 45, 3935-3939. https://doi.org/10.1364/AO.45.003935
  10. M. Born and E. Wolf, "Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light", Cambridge University Press, 1999.
  11. A. Safrani and I. Abdulhalim, "Spectropolarimetric Method for Optic Axis, Retardation, and Birefringence Dispersion Measurement", Opt. Eng., 2009, 48, 053601-053601. https://doi.org/10.1117/1.3126628
  12. H. Yamasaki and S. Morita, "Two-Step Curing Reaction of Epoxy Resin Studied by Thermal Analysis and Infrared Spectroscopy", Applied Spectroscopy, 2012, 66, 926-933. https://doi.org/10.1366/11-06437