DOI QR코드

DOI QR Code

Au 플라워가 성장된 하이브리드형 탄소 나노튜브 마이크로 섬유 기반 유연한 고민감성 압력 센서 연구

Highly Sensitive, Flexible Pressure Sensors Based on Carbon Nanotube Microfibers Hybridized with Au Flowers

  • 김소영 (숭실대학교 유기신소재.파이버공학과) ;
  • 김도환 (숭실대학교 유기신소재.파이버공학과)
  • Kim, So Young (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Do Hwan (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 투고 : 2015.12.18
  • 심사 : 2016.02.12
  • 발행 : 2016.02.29

초록

Pressure-sensitive electronic skin (e-skin) has gained importance in the fields of prosthetics, health monitoring, sensitive tactile information display, and robotics. In particular, many previous studies have reported flexible and highly sensitive pressure sensors. Among them, e-skin devices based on CNT microfibers show wearable and excellent multimodal (pressure, temperature, humidity, and presence of chemicals) sensing capabilities However, the low sensitivity of these devices at high pressures remains a critical issue. Here, we report on highly flexbile and sensitive e-skin devices prepared by carbon nanotube (CNT) microfibers hybridized with Au flowers, which were synthesized by electrochemical methods. First, we controlled the voltage and reaction time in order to optimize the surface morphology of the CNT microfibers. Next, we fabricated capacitive pressure sensors to elucidate the impact of Au flowers on the sensing capability of the CNT microfiber-based pressure sensors, especially in high pressure regimes. The sensors based on CNT microfibers with Au flowers showed fourfold higher sensitivity than did those without the Au flowers, due to the enhanced air traps between the Au flowers. Furthermore, this morphology of CNT microfibers with Au flowers demonstrated satisfactory repeatability and durability under high pressure.

키워드

참고문헌

  1. M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, "25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress", Adv. Mater., 2013, 25, 5997-6038. https://doi.org/10.1002/adma.201302240
  2. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. M. Cormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, "Epidermal Electronics", Science, 2011, 333, 838-843. https://doi.org/10.1126/science.1206157
  3. K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, "Nanowire Active-matrix Circuitry for Low-voltage Macroscale Artificial Skin", Nat. Mater., 2011, 9, 821-826.
  4. T. Sekitani and T. Someya, “Stretchable Organic Integrated Circuits for Large-area Electronic Skin Surfaces”, Mrs Bulletin, 2012, 37, 236-245. https://doi.org/10.1557/mrs.2012.42
  5. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, "A Large-area, Flexible Pressure Sensor Matrix with Organic Field-effect Transistors for Artificial Skin Applications", Proc. Natl. Acad. Sci. USA, 2004, 101, 9966-9970. https://doi.org/10.1073/pnas.0401918101
  6. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, and R. Schwodiauer, "25th Anniversary Article: A Soft Future: from Robots and Sensor Skin to Energy Harvesters", Adv. Mater., 2014, 26, 149-162. https://doi.org/10.1002/adma.201303349
  7. K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, “Organic Solvent Dispersions of Single-walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes”, J. Phys. Chem. B, 2000, 104, 8911-8915. https://doi.org/10.1021/jp002555m
  8. D.-H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 2008, 20, 4887-4892. https://doi.org/10.1002/adma.200801788
  9. A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, and R. H. Baughman, "Super-tough Carbon-nanotube Fibres", Nature, 2003, 423, 703-703. https://doi.org/10.1038/423703a
  10. K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, and A. Windle, “High-performance Carbon Nanotube Fiber”, Science, 2007, 318, 1892-1895. https://doi.org/10.1126/science.1147635
  11. X.-H. Zhong, Y.-L. Li, Y.-K. Liu, X.-H. Qiao, Y. Feng, J. Ling, J. Jin, L. Zhu, F. Hou, and J.-Y. Li, "Continuous Multilayered Carbon Nanotube Yarns", Adv. Mater., 2010, 22, 692-696. https://doi.org/10.1002/adma.200902943
  12. X. Zhang, Q. Li, T. G. Holesinger, P. N. Arendt, J. Huang, P. D. Kirven, T. G. Clapp, R. F. DePaula, X. Liao, Y. Zhao, L. Zheng, D. E. Peterson, and Y. Zhu, "Ultrastrong, Stiff, and Lightweight Carbon-nanotube Fibers", Adv. Mater., 2007, 19, 4198. https://doi.org/10.1002/adma.200700776
  13. S. Y. Kim, S. Park, H. W. Park, D. H. Park, Y. Jeong, and D. H. Kim, "Highly Sensitive and Multimodal All‐Carbon Skin Sensors Capable of Simultaneously Detecting Tactile and Biological Stimuli", Adv. Mater., 2015, 27, 4178-4185. https://doi.org/10.1002/adma.201501408
  14. S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, and Z. Bao, "Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers", Nat. Mater., 2010, 9, 859-864. https://doi.org/10.1038/nmat2834
  15. G. Schwartz, B. C. K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang, and Z. Bao, "Flexible Polymer Transistors with High Pressure Sensitivity for Application in Electronic Skin and Health Monitoring", Nat. Comm., 2013, 4, 1859. https://doi.org/10.1038/ncomms2832
  16. X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, "Silk‐Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals", Adv. Mater., 2014, 26, 1336-1342. https://doi.org/10.1002/adma.201304248
  17. B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, and X. Chen, “Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors”, Small, 2014, 10, 3625-3631. https://doi.org/10.1002/smll.201401207
  18. C. L. Choong, M. B. Shim, B. S. Lee, S. Jeon, D. S. Ko, T. H. Kang, and Y. J. Jeong, "Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array", Adv. Mater., 2014, 26, 3451-3458. https://doi.org/10.1002/adma.201305182
  19. Y. Jung, J. Song, W. Huh, D. Cho, and Y. Jeong, "Controlling the Crystalline Quality of Carbon Nanotubes with Processing Parameters from Chemical Vapor Deposition Synthesis", Chem. Eng. J., 2013, 228, 1050-1056. https://doi.org/10.1016/j.cej.2013.05.088
  20. J. Song, S. Yoon, S. Kim, D. Cho, and Y. Jeong, "Effects of Surfactant on Carbon Nanotube Assembly Synthesized by Direct Spinning", Chem. Eng. Sci., 2013, 104, 25-31. https://doi.org/10.1016/j.ces.2013.09.008
  21. J. Song, S. Kim, S. Yoon, D. Cho, and Y. Jeong, "Enhanced Spinanbility of Carbon Nanotube Fibers by Surfactant Addition", Fiber. Polym., 2014, 15, 762-766. https://doi.org/10.1007/s12221-014-0762-2

피인용 문헌

  1. Improved Mechanical and Electrical Properties of Carbon Nanotube Yarns by Wet Impregnation and Multi-ply Twisting vol.19, pp.12, 2018, https://doi.org/10.1007/s12221-018-8140-0