169

Journal of The Korea Institute of Information Security & Cryptology ISSN 1598-3986(Print)
VOL.26, NO.1, Feb. 2016 ISSN 2288-2715(0nline)
http://dx.doi.org/10.13089/JKIISC.2016.26.1.169

DroidSecure: ¢t=EolE o]ZaAlo|d A3 AS
k312 913 7|l g A+

T =
susy’ o+ @
SAtfetn

DroidSecure: A Technique to Mitigate Privilege Escalation in
Android Application*

Long Nguyen—Vu,* Souhwan Jung’F
Soongsil University

o oF
=) =
FERO|E FAFE A4 AspAom AAHe] sleh. AR oleld WA AAE kel HA BAR +

) bolRiehs S-S A olek mebd, R hERe|s ofFelde]
AL SR AHY 0E 4 24 BTE A9eln, A4 TR AR 15 oY A 98¢ A9 ¥
ARe) A% Aol W AFE D] A A9 ALAe, wR, 21,0649 PYIE AEE 2] A

3 F9E aole ¥ ohlet uak %ol W A4S

ABSTRACT

Android platform is designed to be user-friendly, yet sometimes its convenience introduces vulnerabilities that normal users
cannot justify. In this paper, after making an overview of popular open source analysis tools for android applications, we point
out the dangerous use of Permission Group in current Google Policy, and suggest a technique to mitigate the risks of privilege
escalation that attackers are taking advantage of. By conducting the investigation of 21,064 malware samples, we conclude that
the proposed technique is considered effective in detecting insecure application update, as well as giving users the heads-up in
security awareness.

Keywords: Android Security, Privilege Escalation, Mobile Malware

|. Introduction 2015, according to IDC (1]). 2014 witnessed
an astounding increase of Android

Android has been dominating in the malware rate with 75% in the United
market for the recent years, with 78% of States compared to the previous year [2).
the market-share in the first quarter of Malware also come in different forms
Received(09. 03. 2015), Modified(12. 04. 2015), ARe] odste 7 $afsl9d S (10045904, S=H-= #H55H
Accepted(12. 18. 2015) g7 slell A A BBl An| A Algslr] 913 SecaaS =&
* R ol vl EIE U AREAV|$R15AlE] Bt d= A7)E P o] F o] 83 1GbpsH Euld AR

ITATFAESA ALK A7Z232 3= dFHeH(IT =R ARl T5)

TP-2015-H8501-15-1008); =gt # A= AR1EAA} t A2}, longnv@ssu.ac.kr

A3 gkl y |7k 9le] 947l FAIE (ATC) ¥ WAIAA}, souhwanj@ssu.ac.kr (Corresponding author)

170 DroidSecure: SFEZo]|E o] Ze]Alo]4 H

=
o
ofy
o
=
il
Eo)
=

71zl AE AT

Y
&

(;J.'P
Androguard X X X X X 14 days an
Androwarn X X 2 years ago
APKinspector X X X 2 years ago
DidFail X X X a day ago
Amandroid X X X X X 7 days ago
CFGScanDroid X X X 5 months ago
Maldrolyzer X X a month ago
Ella X X 20 days ago
DroidBox X X X A month ago
TaintDroid X X X a year ago
AndroidHooker X X X 5 months ago

like ransomware (a type of malware that
force users pay money to unlock their
devices), (aggressive advertising
application) or chargeware

adware
(application
associated with premium services like SMS
or Phone Call). We have done a survey
with 50 different open
tools and realized that half of them were

source analysis

in the state of inactive, the others attract

low contribution from community.
projects like
or Amandroid, ones could be
DidFail,

Description of the most 11

very

Besides few ongoing
Androguard
mentioned
DroidBox.
popular tools [16-26] is provided in Table
1 (The latest update of this table is in
2015, June 18th).

Google developers

Permissions in AndroidManifest.xml file. If

are: Androwarn,

requires to declare
there are permissions that relate to the
same topic, then they will belong to a
Permission Group. For example, receive
text messages and send text messages
belong to the same group of permissions
(namely, SMS). Whenever users install an
app from Google Play Store, they need to
accept all individual permissions given by
the developer, or the app will not be

installed. The wusers also cannot modify

the permissions of current apps on their
installed. To
(UX), Android
provides automatic-updates capability so

phones after they were

improve user experience

that users do not need to review all of
installed apps in their devices every time
if there is a new release.

According to current Google policy about
app permissions [(3): if
automatic-updates

you have

turned on and you
already have an application installed with
one permission in Permission Group, then
when the app upgrades, user will not need
to review or accept that
Groups again, if it requires more

permissions in that group. In other word,

Permission
even

unless the user turns off auto-updates
feature, the app gain
permissions without needing any approval

will more
from the user when it upgrades. Moreover,
users no longer see android.permission.
INTERNET permission in the approved list
anymore because it has been granted to
all applications, by default. This issue of
Permission Group can be reproduced by
creating an app with basic permissions
and adding more permissions in the same
Permission Group for the next upgrade.
Besides traditional installation through

AHH 53374 (2016. 2)

171

Table 2. List of dangerous Android Permissions declared in AndroidManifest.xml

android.permission.READ_PHONE_STATE
android.permission.MODIFY_PHONE_STATE
android.permission.RECORD_AUDIO
android.permission.PROCESS_OUTGOING_CALLS
android.permission.ACCOUNT_MANAGER
android.permission.BRICK
android.permission.CLEAR_APP_CACHE
android.permission.CLEAR_APP_USER_DATA
android.permission.CONTROL_LOCATION_UPDATES
android.permission.DELETE_CACHE_FILES
android.permission.DELETE_PACKAGES
android.permission.HARDWARE_TEST
android.permission.KILL_BACKGROUND_PROCESSES
android.permission.SIGNAL_PERSISTENT_PROCESSES
android.permission.UPDATE_DEVICE_STATS
android.permission.WRITE_SECURE_SETTINGS

android.permission, CHANGE_WIFI_STATE
android.permission. DEVICE_POWER
android.permission. FORCE_BACK
android.permission. GET_ACCOUNTS
android.permission.INSTALL_PACKAGES
android.permission. MODIFY_AUDIO_SETTINGS
android.permission.MOUNT_FORMAT_FILESYSTEMS
android.permission. MOUNT_UNMOUNT_FILESYSTEMS
android.permission.NFC
android.permission.READ_CALL_LOG
android.permission.READ_CALENDAR
android.permission.READ_CONTACTS
android.permission.READ_HISTORY_BOOKMARKS
android.permission.REBOOT
android.permission,USE_CREDENTIALS
android.permission.USE_SIP

android.permission.WRITE_HISTORY_BOOKMARKS
android.permission.WRITE_PROFILE
android.permission.GET_TASKS
android.permission.ACCESS_LOCATION_EXTRA_COMMANDS
android.permission.ACCESS_MOCK_LOCATION
android.permission.BLUETOOTH_ADMIN
android.permission.CHANGE_CONFIGURATION
android.permission.DISABLE_KEYGUARD
android.permission.READ_SYNC_STATS
android.permission.SUBSCRIBED_FEEDS_READ
android.permission.SUBSCRIBED_FEEDS_WRITE
android.permission.WRITE_SYNC_SETTINGS
android.permission.ADD_VOICEMAIL
android.permission.INSTALL_DRM
com.android.providers.im.permission.READ_ONLY
android.pe on.READ_SOCIAL_STREAM

android.permission.WRITE_SETTINGS
android.permission.WRITE_SMS
android.permission.READ_SMS
android.permission.CALL_PHONE

android.permission.WRITE_CALENDAR
android.permission, WRITE_CALL_LOG
android.permission. WRITE_CONTACTS

android.pel on. AUTHENTICATE_ACCOUNTS
android.pes on.WRITE_EXTERNAL_STORAGE
android.permission.SYSTEM_ALERT_WINDOW

Play Store, users can install application
disabling
security feature in android OS, users can
almost any APK (Android
Package) files which are
downloaded from the Internet. That means
the privacy and security of users are
different
malicious applications. These applications

from unknown sources. By
install
Application

exposed to many types of
are aggressive in requiring permissions
described in AndroidMafinest file, some of
them even try to imitate the
package names as official apps in Play
Store (27].

Our contribution in this paper can be

same

summarized as follows:

(1) Provide the latest status of open
source malware analysis tools that we
have surveyed in this year. These are
valuable resources for empirical studies to
any researchers in the field.

(2) Discuss the danger of privilege
escalation that results from Permission
Group in Android and propose a technique
to mitigate the risks.

(3) Investigate the trend of malware in
the recent years and discuss
malware behaviors based of the analysis
result.

(4) Conduct a thorough

21,064 Android applications and discover

some

review of

the malicious intention of 22 malware that
use the same package name with apps in
Play Store.
malware are extremely dangerous as they
have the same certificate fingerprints with

Especially, there are 2

the official ones in Play Store, that means
the malware developers already had the
private keys of these genuine apps.

The rest of this paper is organized as
follows: Section II discusses some related
works to android malware analysis. In
section III, we introduce the cloud model
for detecting privilege
provide the analysis statistics in section

escalation. We

IV and the conclusion in section V.

Il. Related Works

Yajin Zhou et al. implement DroidRanger
(4] which is the combination of static and
They
DroidRanger into two parts:

dynamic analysis. separate

(1) Detecting known Android malware:
Firstly, permission-based filtering filters
applications with important permissions
like SEND_SMS, RECEIVE_SMS, etc in
order to narrow down the number of
After that,

behavioral footprint matching is used to

applications to analyze.
detect harmful behaviors through a set of

matching rules. Each rule expresses a

172 DroidSecure: St=o|= o ZejAlolAd AT Al 3HE 9l 7)ol wigh o+

sequence of APIs (or information like
broadcast receivers) that will be called.

(2) Detecting Android
malware: heuristics-based filtering and
dynamic execution monitoring are based
on anomaly

unknown

behaviors and dynamic
analyses of system calls for suspicious
actions. The authors use the Kkernel
module to hook and log system calls
selectively. The next step is for manual
review if suspicious runtime behaviors

were found.

While permission-based filtering is used
to filter
permissions (in order to reduce the
number of apps that are needed to
analyze), this very first step fails to

applications with essential

counter update attack if the malware only
requires basic permissions and then
silently escalates its privilege by
requesting more permissions later on. We
also found another research of analyzing
Manifest file to detect malware in Android

Borja Sanz et al. (5] conduct an
empirical validation of Android malware
through machine learning. This technique
also does not consider the risk when
updating applications, and is not effective
to prevent update attack. Our system will
try to solve the existing problem by
keeping track of each application as they
are installed on the device. We will
describe in detail of DroidSecure in the
next Section.

[1l. Privilege Escalation
Detection Model

The workaround for the problem of
Permission Group is temporarily turning
off automatic-updates, but this leads to
another problem: the app is not at its
newest versions at some time, which is

also unsecure for users if there is an
unpatched vulnerability.

As mentioned in the previous section,
DroidRanger (4] and PUMA (5] accidently
skip two important characteristics of
Android
Permission Group and automatic-updates.
To mitigate the risk caused by this
implementation of Android platform, we

applications, which are

implement DroidSecure, an Android
application that could be able to:

(1) Collect
installed applications, and then categorize
them into sets. Each set represents for 1
application.

permissions from all

(2) Classify permissions of each set
into groups, based on Permission Group
described by Google,

(3) Use BroadcastReceiver to listen to

ACTION_PACKAGE_REPLACED, so that if
there is an upgrade of any application, it
will trigger our tool to compare with the
permissions previously listed in the sets.
Any action that tries to add more
permissions which belong to our
predefined dangerous permissions (Table
2) are considered suspicious, and users
will get a warning about that.
Currently in Android OS, there are 31
Permission Groups that are needed to be
investigated. (6). However, in developer
web page at the time being(7]), Google has
taken down some of them, we believe
there will be an update of this page
corresponding to the release of Android
Marshmallow.

Although our implementation on Android
phone is effective against aggressive
updates, we take a step further by moving
the system to the cloud. We try to address
the problem with apps that are installed
from unknown sources (when users have
already disabled the security feature).
Whenever a user tries to download an

AHH 53374 (2016. 2) 173

Forward URL

App Update

ittt skt I
; Return result

APK install <

Cloud
DroiSecure Server

DroidSecure
Client

Fig. 1. The implementation of DroidSecure

APK file from other markets (instead of
Google Play), DroidSecure triggers the
crawler to download that APK from Play
Store (since the two have the same
package name, defined inside
AndroidManifest.xml),
permissions required by the app, and
justify with the previous versions (in the
case this app has been installed on the

investigates the

phone of the user). In other words, our
system tracks down every action related to
installation or update/upgrade process of
an app. The advantage of this approach is
that DroidSecure client which was
installed in the device does not consume
too much battery power, as well as the
power of cloud allows our system to work
more efficiently. The scenario is described
in Fig. 1.

V. Assessment Analysis

To prove the effectiveness of preventing
an application to gain dangerous
permission of the proposed technique, we
conduct an analysis over 21,064 malicious
applications to clarify the aggressiveness
of privilege escalation of these apps, as
well as provide the understanding of
current trend that attackers are using in
AndroidManifest declaration. Some of the
most dangerous permissions such as
android.permission.BRICK or android.
permission. SYSTEM_ALERT_WINDOW

(that can permantly locks the phone) also

Detect package, Compare Permissions
»

Return result

appear in our result. We believe such
declarations are aimed for rooted phone,
where most of security features are
disabled or easily bypassed under root
power.

As shown in Table 3, we extract and
analyze 88 permissions from more than
21,064 malware samples. The result
indicates the domination of 26 permissions
presented in the table (occupies 95% of
the total permissions). Attacker usually
develop malware that could be able to
steal money from users through premium
services (SMS or Phone Call), or
ransomware that require users to pay
money in order to unlock their phones (by

using SYSTEM_ALERT_WINDOW,
DISABLE KEYGUARD). Besides single,
deadly permissions like
SYSTEM_ALERT_WINDOW or

KILL_BACKGROUND_PROCESSES, we can
recognize some groups of permissions here.
For example: SEND_SMS, RECEIVE_SMS
or READ_CONTACTS, WRITE_CONTACTS.
Such types of permissions in Permission
Group cause no harm when they are used
separately, but when the application
updates and the app escalates its privilege
by requiring more permissions, the phone
can be compromised at some levels, or
completely.

We also randomly select 878 applications
that were downloaded from Google Play
Store to analyze their
permissions and package names, and then

manifest

174 DroidSecure: $FEZo]|E o ZejAlo]Ad W A H3HE 13 7]l dig d+

Table 4. 3 malware families with privilege
escalation intention

Table 3. Permission Ratio in Malware

compare with our malware dataset. The
evaluation is performed between
18,494,192 app pairs, resulted in 41
applications (in our malware dataset)
which have similar package names with 22
applications downloaded from Play Store.
We narrow down the scope by
investigating their certificate fingerprints
inside META-INF directories, and found 3
serious cases of privilege escalation
(9-15). Table 4 describes the package
name, permissions escalation (include the
number of permissions in the original app
and the number of permissions are added
in the malware), and the Malware Family
which are recognized by different
Anti-Virus software in VirusTotal. Each of
these apps also has good reputation in
Play Store with more than 10 million
installations, which facilitate the
widespread of these disguised malware.
Especially, there are two cases that have
the same certificate fingerprints with the

Permission Name Count |Ratio
android.permission.READ_PHONE_STATE 19329 [19% Package name Permissions Malware
android.permission.SEND_SMS 10270 | 10% raise Family
android.permission.RECEIVE_SMS 7629 | 8%
android.permission.RECEIVE_BOOT_COMPLETED 7349 | 7% . Android/
android.permission.READ_SMS 6237 | 6% tv.pps.moblle 43 to 76 SystemMonitor
android.permission.SYSTEM_ALERT_WINDOW 4755 | 5%
android.permis.sion‘M.OU.NTiuNMOUNTiFILESVSTEMS 4270 | 4% com.scompa. o
android.permission. WRITE_SETTINGS 3958 | 4% facechanger 8 to 21 Minimob
android.permission.RESTART_PACKAGES 3697 | 4%
android.permission.READ_LOGS 3601 | 4% com.outfit7. 15 to 19 Android/
android.permission.CALL_PHONE 3506 | 4% talkingsantafree SMSKey. L
android.permission.READ_CONTACTS 3007 | 3%
android.permission.READ_EXTERNAL_STORAGE 2530 | 3%
android.permission.CHANGE_NETWORK_STATE 2291 | 2% original apps in Google Play Store
android.permission.INSTALL_PACKAGES 1940 | 2% A .
android.permission.WRITE_SMS 1808 | 2% (tv.pps.mobile and com.outfit7.
android.permission.KILL_BACKGROUND_PROCESSES | 1511 | 2% talkingsantaf‘ree). That means When user
android.permission. WRITE_APN_SETTINGS 1288 | 1% . L.
android.permission.DISABLE_KEYGUARD 1010 | 1% installs these malicious apps, the Package
android.permission.PROCESS_OUTGOING_CALLS 908 1% Manager w111 allow them to be installed
android.permission.MODIFY_PHONE_STATE 895 1% . o
android.permission. WRITE_CONTACTS 807 | 1% since they have the same certificate
android.permission.DELETE_PACKAGES 803 1% ﬁngerprints Wlth the ones in Google Play
android.permission.WRITE_SECURE_SETTINGS 638 1% S b 1 h . .
android.permission EXPAND_STATUS_BAR 587 | 1% tore. We believe this is a serious
android.permission.RECEIVE_ WAP_PUSH 573 | 1% problem, as the private Lkey of the

developers have been leaked to the outside
world, and their keys are being abused by
these malicious apps.

To summarize our assessment analysis:
(1) We provide a feature to eliminate
special permissions that are wused by
malware to compromise rooted devices, so
that users with rooted phones could have
safety at some levels, even though the
feature allows “installation from unknown
source is enabled”

(2) With the combination of Permission
Group, users could avoid unsafe upgrade
of applications in Play Store, or privilege
escalation through third party
applications.

(3) We also found the problem of similar
certificate fingerprints between official
applications and malware. This may lead
to a breach that can be abused to spread
malware to many devices.

AHH 53374 (2016. 2) 175

V. Conclusion

In this brief
introduction of the popular analysis tools

paper, we have a
and their newest updates. These tools play
an important role in Android malware
analysis field. After that, we discuss our
about escalation of
apps
AndroidManifest, by taking advantage of

current Google policy in the platform. Our

concern privilege

malware inside and outside

experiment shows the risk caused by
Permission Group and similar Package
Name installation can let the malware
completely compromise the Android
system. While the downloaded apps from
Google Play are still relatively small

compared to the whole Play Store, we
expect to have a thorough investigation
with more than 1 million apps in the near
future. The technique of malware that use
similar package name is more prevalent
it urges Google
policy to be more rigorous in permission

than we could expect,

and installation management.

In the near future, we plan to extend our
current system to work with the new
in Android
maintain the

scheme of App Permissions
Marshmallow while still
backward compatibility with Lollipop and
Kitkat. in Android
Marshmallow removal of

The drastic changes
to the
Permission Group (28], which could bring
pitfalls to the
product. Furthermore, we expect to have a

leads

some newly developed
thorough investigation with applications in
Google Play Store by increasing the
number of crawled apps to 20,000 (1000
apps at least for each category in Google
Play). That is an important step to have
more precise statistics with the current
insight of

trends, as well as a better

malware analysis.

References

Smartphone OS Market Share, Q1 2015.h
ttp://www.idc.com/prodserv/smartpho
ne-os-market-share.jsp

2014 Mobile Threat Report, https://ww
w.lookout.com/resources/reports/mobil
e-threat-report

Android Group Permissions, https://sup
port.google.com/googleplay/answer/601
49727p=app_permissions

Yajin Zhou, Zhi Wang, Wu Zhou and
Xuxian Jiang, "Hey, You, Get off of My
Market: Detecting Malicious Apps in

Official and Alternative Android
Markets,” Proceedings of the 19th
Network and Distributed System

Security Symposium, Feb. 2012.

Borja Sanz et al., "PUMA: Permission
Usage to Detect Malware in Android,”
International Joint Conference
CISIS'12-ICEUTE 12-SOCO0O’12, pp.
289-298, 2013

Android Permission Group, https://web.
archive.org/web/20150319134451/http
s://developer.android.com/reference/an
droid/Manifest.permission_group.html.

Android Permission Group Update, http
s://developer.android.com/reference/a
ndroid/Manifest. permission_group.html
Bharmal, A., Laxmi, V., Ganmoor, V.,
Gaur, M.S., Conti, M., and Rajarajan, M.
“Android Security: A Survey of Issues,
Malware Penetration and Defenses.”
Communications Surveys & Tutorials,
vol.17, no.2, pp. 998-1022, 2015.

Play Store App: PPS (for Mobile), https:/
/play.google.com/store/apps/details?id
=tv.pps.mobile

Malware Android/System Monitor, http
s://www.virustotal.com/en/file/c98465
d75f31591b53345974eaa638faf0807f94ef
5f694c633fe4f6d5f547a3/analysis/14408
45487/

176 DroidSecure: tERo]= o] Zg]7 o]

U3 s S5 A3 sl dE AT

(11) Play Store App: Face Changer, https://pl
ay.google.com/store/apps/details?id=c
om.scoompa.facechanger

(12) Malware Android/AdDisplay. https://w
ww.virustotal.com/en/file/d26327e28¢6
24bfbd99c¢45035344ccdbel25e8f30b9%aace
842dc40f029825a0b/analysis/144084843
9/

(13) Play Store App: Talking Stanta,
https://play.google.com/store/apps/de-
tails?id=com.outfit7.talkingsantafree

(14) Malware SMSKeyl, https://www.virust
otal.com/en/file/788b5b0b06cdfcd4f3d1
62b1090d722a7aae37c114d518eceael730
ceec6b070/analysis/1440853733/

(15) Malware SMSKey2, https://www.virust
otal.com/en/file/ca04bc361f83d028138c
65cc88110celab27e14423715e8070c2486
e200e2205/analysis/1440853768/

(16) Androguard, https://github.com/andro
guard/androguard

(17) Androwarn, https://github.com/maaaa
z/androwarn

(18) APKinspector, https://github.com/hone
ynet/apkinspector

(19) DidFail, https://www.cs.cmu.edu/~wkl
ieber/didfail

20084 9¥~2012v 94:
Technology

(AR FFE o,

1997 ~ A
@A FASE 03l

(M X274

$49%% (Long Nguyen-Vu) 3]
Vietnam National University of Information

(20) Amandroid, https://github.com/sireum
/amandroid

(21) CFGScanDroid, https://github.com/dou
ggard/CFGScanDroid

(22) Maldrolyzer, https://github.com/maldr
oid/maldrolyzer

(23) Ella, https://github.com/saswatanand/
ella

(24]) Droidbox, https://code.google.com/p/dr
oidbox

(25) TaintDroid, https://github.com/TaintD
roid

(26) AndroidHooker, https://github.com/An
droidHooker/hooker

(27) Poeplau, S., Fratantonio, Y., Bianchi, A.,
Kruegel, C., and Vigna, G, “Execute This!
Analyzing Unsafe and
Dynamic Code Loading in Android
Applications,” Proceedings of the ISOC
Network and Distributed System
Security Symposium (NDSS) Feb. 2014

(28] Android M Permissions: https://www.an
droidpit.com/android-m-permissions-e

Malicious

xplained

20149 34 ~3A): AUty A W EA ST AA}}A]
H]_o] E_""_

HEY = Hot

A 4 3 (Souhwan Jung) #4139

19854 29 Adjsta A}t £

19874 249 Agdistal Azt A}

19964 64¥: University of Washington ¥}
19881 ~19914: 3=EAl Al A+Y

FAN W ARA BFE e
zatd Wl UES = wek

