
169

Journal of The Korea Institute of Information Security & Cryptology
VOL.26, NO.1, Feb. 2016

ISSN 1598-3986(Print)
ISSN 2288-2715(Online)

http://dx.doi.org/10.13089/JKIISC.2016.26.1.169

DroidSecure: 안드로이드 어 리 이션 권한 상승

완화를 한 기술에 한 연구*

응웬부 ,† 정 수 환‡

숭실 학교

DroidSecure: A Technique to Mitigate Privilege Escalation in

Android Application*

Long Nguyen-Vu,† Souhwan Jung‡

Soongsil University

요 약

안드로이드 랫폼은 사용자 친화 으로 설계되어 있다. 하지만 이러한 친화 설계는 취약 이 쉽게 발생할 수

있고, 일반 인 사용자는 쉽게 탐지가 어렵다는 단 을 가지고 있다. 따라서, 본 논문에서는 안드로이드 어 리 이

션 분석을 한 유명한 오 소스 분석 도구를 설명하고, 재 구 의 권한 그룹에 한 정책의 험성을 설명한 후

공격자의 권한 상승에 한 험을 완화하기 한 기법을 제안한다. 한, 21,064의 악성코드 샘 을 조사하여 제

안한 기술이 안 하지 않은 응용 로그램 업데이트 탐지에 한 증명을 하 을 뿐 아니라 보안 에 한 인식을

고취시키고자 하 다.

ABSTRACT

Android platform is designed to be user-friendly, yet sometimes its convenience introduces vulnerabilities that normal users

cannot justify. In this paper, after making an overview of popular open source analysis tools for android applications, we point

out the dangerous use of Permission Group in current Google Policy, and suggest a technique to mitigate the risks of privilege

escalation that attackers are taking advantage of. By conducting the investigation of 21,064 malware samples, we conclude that

the proposed technique is considered effective in detecting insecure application update, as well as giving users the heads-up in

security awareness.

Keywords: Android Security, Privilege Escalation, Mobile Malware

I. Introduction*

Android has been dominating in the

market for the recent years, with 78% of

the market-share in the first quarter of

Received(09. 03. 2015), Modified(12. 04. 2015),

Accepted(12. 18. 2015)

* 본 연구는 미래창조과학부 정보통신기술진흥센터의 학

IT연구센터육성 지원사업의 연구결과로 수행되었습니다(II

TP-2015-H8501-15-1008); 한, 본 연구는 산업통상자

원부 한국산업기술평가 리원의 우수기술연구센터(ATC)

2015, according to IDC [1]. 2014 witnessed

an astounding increase of Android

malware rate with 75% in the United

States compared to the previous year [2].†

Malware also come in different forms

사업의 일환으로 수행하 음. [10045904, 클라우드 컴퓨

환경하에서 정보보안 서비스를 제공하기 한 SecaaS

임워크 원천기술 개발과 이를 이용한 1Gbps 모바일 정보

유출방지 서비스 구축]

†주 자, longnv@ssu.ac.kr

‡교신 자, souhwanj@ssu.ac.kr (Corresponding author)

170 DroidSecure: 안드로이드 어 리 이션 권한 상승 완화를 한 기술에 한 연구

Table 1. An overview of open source Malware Analysis Tool

like ransomware (a type of malware that

force users pay money to unlock their

devices), adware (aggressive advertising

application) or chargeware (application

associated with premium services like SMS

or Phone Call). We have done a survey

with 50 different open source analysis

tools and realized that half of them were

in the state of inactive, the others attract

very low contribution from community.

Besides few ongoing projects like

Androguard or Amandroid, ones could be

mentioned are: Androwarn, DidFail,

DroidBox. Description of the most 11

popular tools [16-26] is provided in Table

1 (The latest update of this table is in

2015, June 18th).

 Google requires developers to declare

Permissions in AndroidManifest.xml file. If

there are permissions that relate to the

same topic, then they will belong to a

Permission Group. For example, receive

text messages and send text messages

belong to the same group of permissions

(namely, SMS). Whenever users install an

app from Google Play Store, they need to

accept all individual permissions given by

the developer, or the app will not be

installed. The users also cannot modify

the permissions of current apps on their

phones after they were installed. To

improve user experience (UX), Android

provides automatic-updates capability so

that users do not need to review all of

installed apps in their devices every time

if there is a new release.

According to current Google policy about

app permissions [3]: if you have

automatic-updates turned on and you

already have an application installed with

one permission in Permission Group, then

when the app upgrades, user will not need

to review or accept that Permission

Groups again, even if it requires more

permissions in that group. In other word,

unless the user turns off auto-updates

feature, the app will gain more

permissions without needing any approval

from the user when it upgrades. Moreover,

users no longer see android.permission.

INTERNET permission in the approved list

anymore because it has been granted to

all applications, by default. This issue of

Permission Group can be reproduced by

creating an app with basic permissions

and adding more permissions in the same

Permission Group for the next upgrade.

 Besides traditional installation through

정보보호학회논문지 (2016. 2) 171

Table 2. List of dangerous Android Permissions declared in AndroidManifest.xml

Play Store, users can install application

from unknown sources. By disabling

security feature in android OS, users can

install almost any APK (Android

Application Package) files which are

downloaded from the Internet. That means

the privacy and security of users are

exposed to many different types of

malicious applications. These applications

are aggressive in requiring permissions

described in AndroidMafinest file, some of

them even try to imitate the same

package names as official apps in Play

Store [27].

 Our contribution in this paper can be

summarized as follows:

 (1) Provide the latest status of open

source malware analysis tools that we

have surveyed in this year. These are

valuable resources for empirical studies to

any researchers in the field.

 (2) Discuss the danger of privilege

escalation that results from Permission

Group in Android and propose a technique

to mitigate the risks.

 (3) Investigate the trend of malware in

the recent years and discuss some

malware behaviors based of the analysis

result.

 (4) Conduct a thorough review of

21,064 Android applications and discover

the malicious intention of 22 malware that

use the same package name with apps in

Play Store. Especially, there are 2

malware are extremely dangerous as they

have the same certificate fingerprints with

the official ones in Play Store, that means

the malware developers already had the

private keys of these genuine apps.

 The rest of this paper is organized as

follows: Section II discusses some related

works to android malware analysis. In

section III, we introduce the cloud model

for detecting privilege escalation. We

provide the analysis statistics in section

IV and the conclusion in section V.

II. Related Works

 Yajin Zhou et al. implement DroidRanger

[4] which is the combination of static and

dynamic analysis. They separate

DroidRanger into two parts:

 (1) Detecting known Android malware:

Firstly, permission-based filtering filters

applications with important permissions

like SEND_SMS, RECEIVE_SMS, etc in

order to narrow down the number of

applications to analyze. After that,

behavioral footprint matching is used to

detect harmful behaviors through a set of

matching rules. Each rule expresses a

172 DroidSecure: 안드로이드 어 리 이션 권한 상승 완화를 한 기술에 한 연구

sequence of APIs (or information like

broadcast receivers) that will be called.

 (2) Detecting unknown Android

malware: heuristics-based filtering and

dynamic execution monitoring are based

on anomaly behaviors and dynamic

analyses of system calls for suspicious

actions. The authors use the kernel

module to hook and log system calls

selectively. The next step is for manual

review if suspicious runtime behaviors

were found.

 While permission-based filtering is used

to filter applications with essential

permissions (in order to reduce the

number of apps that are needed to

analyze), this very first step fails to

counter update attack if the malware only

requires basic permissions and then

silently escalates its privilege by

requesting more permissions later on. We

also found another research of analyzing

Manifest file to detect malware in Android

: Borja Sanz et al. [5] conduct an

empirical validation of Android malware

through machine learning. This technique

also does not consider the risk when

updating applications, and is not effective

to prevent update attack. Our system will

try to solve the existing problem by

keeping track of each application as they

are installed on the device. We will

describe in detail of DroidSecure in the

next Section.

III. Privilege Escalation

Detection Model

 The workaround for the problem of

Permission Group is temporarily turning

off automatic-updates, but this leads to

another problem: the app is not at its

newest versions at some time, which is

also unsecure for users if there is an

unpatched vulnerability.

As mentioned in the previous section,

DroidRanger [4] and PUMA [5] accidently

skip two important characteristics of

Android applications, which are

Permission Group and automatic-updates.

To mitigate the risk caused by this

implementation of Android platform, we

implement DroidSecure, an Android

application that could be able to:

 (1) Collect permissions from all

installed applications, and then categorize

them into sets. Each set represents for 1

application.

 (2) Classify permissions of each set

into groups, based on Permission Group

described by Google,

 (3) Use BroadcastReceiver to listen to

ACTION_PACKAGE_REPLACED, so that if

there is an upgrade of any application, it

will trigger our tool to compare with the

permissions previously listed in the sets.

Any action that tries to add more

permissions which belong to our

predefined dangerous permissions (Table

2) are considered suspicious, and users

will get a warning about that.

Currently in Android OS, there are 31

Permission Groups that are needed to be

investigated. [6]. However, in developer

web page at the time being[7], Google has

taken down some of them, we believe

there will be an update of this page

corresponding to the release of Android

Marshmallow.

 Although our implementation on Android

phone is effective against aggressive

updates, we take a step further by moving

the system to the cloud. We try to address

the problem with apps that are installed

from unknown sources (when users have

already disabled the security feature).

Whenever a user tries to download an

정보보호학회논문지 (2016. 2) 173

Fig. 1. The implementation of DroidSecure

APK file from other markets (instead of

Google Play), DroidSecure triggers the

crawler to download that APK from Play

Store (since the two have the same

package name, defined inside

AndroidManifest.xml), investigates the

permissions required by the app, and

justify with the previous versions (in the

case this app has been installed on the

phone of the user). In other words, our

system tracks down every action related to

installation or update/upgrade process of

an app. The advantage of this approach is

that DroidSecure client which was

installed in the device does not consume

too much battery power, as well as the

power of cloud allows our system to work

more efficiently. The scenario is described

in Fig. 1.

IV. Assessment Analysis

 To prove the effectiveness of preventing

an application to gain dangerous

permission of the proposed technique, we

conduct an analysis over 21,064 malicious

applications to clarify the aggressiveness

of privilege escalation of these apps, as

well as provide the understanding of

current trend that attackers are using in

AndroidManifest declaration. Some of the

most dangerous permissions such as

android.permission.BRICK or android.

permission.SYSTEM_ALERT_WINDOW

(that can permantly locks the phone) also

appear in our result. We believe such

declarations are aimed for rooted phone,

where most of security features are

disabled or easily bypassed under root

power.

 As shown in Table 3, we extract and

analyze 88 permissions from more than

21,064 malware samples. The result

indicates the domination of 26 permissions

presented in the table (occupies 95% of

the total permissions). Attacker usually

develop malware that could be able to

steal money from users through premium

services (SMS or Phone Call), or

ransomware that require users to pay

money in order to unlock their phones (by

using SYSTEM_ALERT_WINDOW,

DISABLE_KEYGUARD). Besides single,

deadly permissions like

SYSTEM_ALERT_WINDOW or

KILL_BACKGROUND_PROCESSES, we can

recognize some groups of permissions here.

For example: SEND_SMS, RECEIVE_SMS

or READ_CONTACTS, WRITE_CONTACTS.

Such types of permissions in Permission

Group cause no harm when they are used

separately, but when the application

updates and the app escalates its privilege

by requiring more permissions, the phone

can be compromised at some levels, or

completely.

 We also randomly select 878 applications

that were downloaded from Google Play

Store to analyze their manifest

permissions and package names, and then

174 DroidSecure: 안드로이드 어 리 이션 권한 상승 완화를 한 기술에 한 연구

Table 3. Permission Ratio in Malware

Package name
Permissions

raise

Malware

Family

tv.pps.mobile 43 to 76
Android/

SystemMonitor

com.scompa.

facechanger
8 to 21 Minimob

com.outfit7.
talkingsantafree

15 to 19
Android/

SMSKey.L

Table 4. 3 malware families with privilege

escalation intention

compare with our malware dataset. The

evaluation is performed between

18,494,192 app pairs, resulted in 41

applications (in our malware dataset)

which have similar package names with 22

applications downloaded from Play Store.

We narrow down the scope by

investigating their certificate fingerprints

inside META-INF directories, and found 3

serious cases of privilege escalation

[9-15]. Table 4 describes the package

name, permissions escalation (include the

number of permissions in the original app

and the number of permissions are added

in the malware), and the Malware Family

which are recognized by different

Anti-Virus software in VirusTotal. Each of

these apps also has good reputation in

Play Store with more than 10 million

installations, which facilitate the

widespread of these disguised malware.

 Especially, there are two cases that have

the same certificate fingerprints with the

original apps in Google Play Store

(tv.pps.mobile and com.outfit7.

talkingsantafree). That means when user

installs these malicious apps, the Package

Manager will allow them to be installed

since they have the same certificate

fingerprints with the ones in Google Play

Store. We believe this is a serious

problem, as the private key of the

developers have been leaked to the outside

world, and their keys are being abused by

these malicious apps.

 To summarize our assessment analysis:

(1) We provide a feature to eliminate

special permissions that are used by

malware to compromise rooted devices, so

that users with rooted phones could have

safety at some levels, even though the

feature allows "installation from unknown

source is enabled"

(2) With the combination of Permission

Group, users could avoid unsafe upgrade

of applications in Play Store, or privilege

escalation through third party

applications.

(3) We also found the problem of similar

certificate fingerprints between official

applications and malware. This may lead

to a breach that can be abused to spread

malware to many devices.

정보보호학회논문지 (2016. 2) 175

V. Conclusion

 In this paper, we have a brief

introduction of the popular analysis tools

and their newest updates. These tools play

an important role in Android malware

analysis field. After that, we discuss our

concern about privilege escalation of

malware apps inside and outside

AndroidManifest, by taking advantage of

current Google policy in the platform. Our

experiment shows the risk caused by

Permission Group and similar Package

Name installation can let the malware

completely compromise the Android

system. While the downloaded apps from

Google Play are still relatively small

compared to the whole Play Store, we

expect to have a thorough investigation

with more than 1 million apps in the near

future. The technique of malware that use

similar package name is more prevalent

than we could expect, it urges Google

policy to be more rigorous in permission

and installation management.

In the near future, we plan to extend our

current system to work with the new

scheme of App Permissions in Android

Marshmallow while still maintain the

backward compatibility with Lollipop and

Kitkat. The drastic changes in Android

Marshmallow leads to the removal of

Permission Group [28], which could bring

some pitfalls to the newly developed

product. Furthermore, we expect to have a

thorough investigation with applications in

Google Play Store by increasing the

number of crawled apps to 20,000 (1000

apps at least for each category in Google

Play). That is an important step to have

more precise statistics with the current

trends, as well as a better insight of

malware analysis.

References

[1] Smartphone OS Market Share, Q1 2015,h

ttp://www.idc.com/prodserv/smartpho

ne-os-market-share.jsp

[2] 2014 Mobile Threat Report, https://ww

w.lookout.com/resources/reports/mobil

e-threat-report

[3] Android Group Permissions, https://sup

port.google.com/googleplay/answer/601

4972?p=app_permissions

[4] Yajin Zhou, Zhi Wang, Wu Zhou and

Xuxian Jiang, "Hey, You, Get off of My

Market: Detecting Malicious Apps in

Official and Alternative Android

Markets," Proceedings of the 19th

Network and Distributed System

Security Symposium, Feb. 2012.

[5] Borja Sanz et al., "PUMA: Permission

Usage to Detect Malware in Android,"

International Joint Conference

CISIS’12-ICEUTE´12-SOCO´12, pp.

289-298, 2013

[6] Android Permission Group, https://web.

archive.org/web/20150319134451/http

s://developer.android.com/reference/an

droid/Manifest.permission_group.html.

[7] Android Permission Group Update, http

s://developer.android.com/reference/a

ndroid/Manifest.permission_group.html

[8] Bharmal, A., Laxmi, V., Ganmoor, V.,

Gaur, M.S., Conti, M., and Rajarajan, M.

“Android Security: A Survey of Issues,

Malware Penetration and Defenses,”

Communications Surveys & Tutorials,

vol.17, no.2, pp. 998-1022, 2015.

[9] Play Store App: PPS (for Mobile), https:/

/play.google.com/store/apps/details?id

=tv.pps.mobile

[10] Malware Android/System Monitor, http

s://www.virustotal.com/en/file/c98465

d75f31591b53345974eaa638faf0807f94ef

5f694c633fe4f6d5f547a3/analysis/14408

45487/

176 DroidSecure: 안드로이드 어 리 이션 권한 상승 완화를 한 기술에 한 연구

< 자소개>

응웬부 (Long Nguyen-Vu) 학생회원

2008년 9월~2012년 9월: Vietnam National University of Information

Technology

2014년 3월~ 재: 숭실 학교 정보통신공학과 석사과정

< 심분야> 클라우드 보안, 모바일 보안, 네트워크 보안

정 수 환 (Souhwan Jung) 종신회원

1985년 2월: 서울 학교 자공학과 졸업

1987년 2월: 서울 학교 자공학과 석사

1996년 6월: University of Washington 박사

1988년~1991년: 한국통신 임 연구원

1997년~ 재: 숭실 학교 자정보공학부 교수

< 심분야> 클라우드 보안, 모바일 보안, 네트워크 보안

[11] Play Store App: Face Changer, https://pl

ay.google.com/store/apps/details?id=c

om.scoompa.facechanger

[12] Malware Android/AdDisplay, https://w

ww.virustotal.com/en/file/d26327e28c6

24bfbd99c45035344ccdbc125e8f30b9aace

842dc40f029825a0b/analysis/144084843

9/

[13] Play Store App: Talking Stanta,

https://play.google.com/store/apps/de-

tails?id=com.outfit7.talkingsantafree

[14] Malware SMSKey1, https://www.virust

otal.com/en/file/788b5b0b06cdfcd4f3d1

62b1090d722a7aae37c114d518eceae1730

ceec6b070/analysis/1440853733/

[15] Malware SMSKey2, https://www.virust

otal.com/en/file/ca04bc361f83d028138c

65cc88110ce1ab27e14423715e8070c2486

e200e2205/analysis/1440853768/

[16] Androguard, https://github.com/andro

guard/androguard

[17] Androwarn, https://github.com/maaaa

z/androwarn

[18] APKinspector, https://github.com/hone

ynet/apkinspector

[19] DidFail, https://www.cs.cmu.edu/~wkl

ieber/didfail

[20] Amandroid, https://github.com/sireum

/amandroid

[21] CFGScanDroid, https://github.com/dou

ggard/CFGScanDroid

[22] Maldrolyzer, https://github.com/maldr

oid/maldrolyzer

[23] Ella, https://github.com/saswatanand/

ella

[24] Droidbox, https://code.google.com/p/dr

oidbox

[25] TaintDroid, https://github.com/TaintD

roid

[26] AndroidHooker, https://github.com/An

droidHooker/hooker

[27] Poeplau, S., Fratantonio, Y., Bianchi, A.,

Kruegel, C., and Vigna, G, “Execute This!

Analyzing Unsafe and Malicious

Dynamic Code Loading in Android

Applications,” Proceedings of the ISOC

Network and Distributed System

Security Symposium (NDSS) Feb. 2014

[28] Android M Permissions: https://www.an

droidpit.com/android-m-permissions-e

xplained

