DOI QR코드

DOI QR Code

Congestion Control Algorithms Evaluation of TCP Linux Variants in Dumbbell

덤벨 네트워크에서 TCP 리눅스 변종의 혼잡 제어 알고리즘 평가

  • Received : 2015.11.20
  • Accepted : 2015.12.17
  • Published : 2016.02.29

Abstract

Dumbbell is the most basic topology that can be used in almost all kind of network experiment within it or just by little expansion. While Transmission Control Protocol TCP is the basic protocol that is used for the connectivity among networks and stations. TCP major and basic goal is to provide path and services to different applications for communication. For that reason TCP has to transfer a lot of data through a communication medium that cause serious congestion problem. To calculate the congestion problem, different kind of pre-cure solutions are developer which are Loss Based Variant and Delay Based Variant. While LBV keep track of the data that is going to be passed through TCP protocol, if the data packets start dropping that means congestion occurrence which notify as a symptom, TCP CUBIC use LBV for notifying the loss. Similarly the DBV work with the acknowledgment procedure that is used in when data ACK get late with respect to its set data rate time, TCP COMPOUND/VAGAS are examples of DBV. Many algorithms have been purposed to control the congestion in different TCP variants but the loss of data packets did not completely controlled. In this paper, the congestion control algorithms are implemented and corresponding results are analyzed in Dumbbell topology, it is typically used to analyze the TCP traffic flows. Fairness of throughput is evaluated for different TCP variants using network simulator (NS-2).

덤벨은 조금 확장시키면 거의 모든 종류의 네트워크 실험에서 사용할 수 있는 가장 기본적인 토폴로지이다. 전송 제어 프로토콜인 TCP는 네트워크와 기지국 사이의 연결을 위해 사용되는 기본적인 프로토콜이다. TCP의 주요 목표는 기본적인 통신을 위하여 다른 애플리케이션에 서비스와 경로를 제공하는 것이다. 이로 인해 TCP는 통신 매체를 통해 많은 양의 데이터를 전송해야하기 때문에 심각한 혼잡 문제를 야기한다. 혼잡 문제를 계산하기 위해 다른 종류의 pre-cure 솔루션인 LBV와 DBV가 개발되었다. LBV은 만일 패킷들이 삭제되기 시작한다면, TCP 프로토콜을 통해 전달 될 예정인 데이터를 추적한다. 그때 TCP CUBIC은 그 손실을 알리기 위하여 LBV를 사용한다. 마찬가지로 DBV는 ACK 데이터가 그 설정된 데이터 속도 시간보다 지연되었을 때 사용되는 승인절차로 동작한다. TCP COMPOUND/VAGAS가 DBV의 예이다. 많은 알고리즘이 다른 TCP 변형에서 혼잡을 제어하기 위해 제안되었지만, 데이터 패킷들의 손실을 완전히 조절하지 못하였다. 이 논문에서, 혼잡 제어 알고리즘을 구현하였으며 그 결과를 덤벨 토폴로지를 사용하여 분석하였다. 그것은 일반적으로 TCP 트래픽을 분석하는 데 사용한다. 처리량의 공정성은 네트워크 시뮬레이터 (NS-2)를 사용하여 다른 TCP 변형에서 평가하였다.

Keywords

References

  1. Mohith P. Tahilaini "Comparative study of High Speed TCP variants in Multihop Wireless Networks," IJCTE, Vol. 5, No. 5, Oct 2013.
  2. I. F. Akylidiz, X. Wang, and W. Wang, "Wireless mesh networks: a survey," Computer Networks, Elsevier, pp. 445-487, January 2005.
  3. T. Kelly, "Scalable TCP: Improving Performance in High Speed Wide Area Networks," ACM SIGCOMM Computer Communication Review, vol. 33, pp. 83-91, 2003.
  4. V. Jacobson, "Congestion avoidance and control," Proceedings of SIGCOMM 88, ACM, Stanford, CA, Aug. 1988.
  5. K. Fall and S. Floyd, "Simulation-based comparisons of Tahoe, Reno, and SACK TCP," ACM Computer Communication Review, vol. 26, no. 3, pp. 5-21, 1996.
  6. S. Floyd and T. Henderson, "The new Reno modification to TCPs fast recovery algorithm," Request for Comments 2582, Experimental, April 1999.
  7. L. Brakmo and L. Peterson, "TCP Vegas: end-to-end congestion avoidance on a global internet," IEEE Journal on Selected Areas in Communication, vol. 13, pp. 1465-1480, Oct. 1995. https://doi.org/10.1109/49.464716
  8. K. T. J. Song, Q. Zhang, and M. Sridharan, "A compound TCP approach for high-speed and long distance networks," in Proceedings of PFLD Net, 2006.
  9. S. Floyd, "High speed TCP for Large Congestion Windows," Request for Comments 3649, Experimental, 2003.
  10. L. Xu, K. Harfoush, and I. Rhee, "Binary Increase Congestion Control for fast long-distance networks," in Proceedings of IEEE INFOCOM, Hong Kong, 2004.
  11. I. Rhee and L. Xu, "CUBIC: A new TCP-friendly high-speed TCP variant," Proceedings of the third PFLD Net Workshop, France, 2005.
  12. C. Jin, D. X. Wei, and S. H. Low, "FAST TCP: motivation, architecture, algorithms, performance," in Proceedings of IEEE INFOCOM, Hong Kong, 2004.
  13. TCP Evolution and Comparison, Which TCP will Scale to Meet the Demands of Todays Internet? Whitepaper, Fast Soft, Pasadena, 2008.
  14. M. Zaman, "Unreliability & Instability of Wireless Links between Wireless Nodes in Mobile ADHOC Networks," in J. Glob. Innov. Agric. Soc. Sci., 2014, 2(3): 138-142.
  15. E. D. Souza and D. Agarwal, "A High Speed TCP Study: Characteristics and Deployment Issues," LBNL Technical Report, Berkeley, 2003.
  16. M. Gerla, K. Tang, and R. Bagrodia, "TCP Performance in Wireless Multi-hop Networks," in Proceedings of IEEE WMCSA "99, New Orleans, LA, Feb. 1999.
  17. G. Holland and N. Vaidya, "Analysis of TCP Performance over Mobile Ad Hoc Networks," ACM/IEEE MOBICOM 99, Seattle, Washington, Aug. 1999.
  18. M. Zaman, "Implementation of Some Enhancement in Wireless Network Security by Finding Vulnerabilities, Threads and Attacks," in J. Glob. Innov. Agric. Soc. Sci., 2014, 2(3): 143-151.