DOI QR코드

DOI QR Code

Anti-Inflammatory Effect of Rosa rugosa Flower Extract in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

  • Tursun, Xirali (Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) ;
  • Zhao, Yongxin (State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) ;
  • Talat, Zulfiya (State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) ;
  • Xin, Xuelei (Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) ;
  • Tursun, Adila (State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) ;
  • Abdulla, Rahima (Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) ;
  • AkberAisa, Haji (Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences)
  • Received : 2015.07.02
  • Accepted : 2015.09.24
  • Published : 2016.03.01

Abstract

Rosa rugosa Thunb, a deciduous shrub of the genus Rosa, has been widely used to treat stomach aches, diarrhoea, pain, and chronic inflammatory disease in eastern Asia. In recent years, our research team has extensively studied the Rosa rugosa flower extract, and specifically undertook pharmacological experiments which have optimized the extraction process. Our methods have yielded a standard extract enriched in phenolic compounds, named PRE. Herein, we expand our efforts and evaluated the anti-inflammatory activity of PRE on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. PRE significantly inhibited production of nitric oxide (NO), prostaglandin $E_2(PGE_2)$, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and interleukin $1{\beta}$ (IL-$1{\beta}$), as well as expression of their synthesizing enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase2 (COX-2). Furthermore, PRE inhibited activity of mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappa B (NF-${\kappa}B$) signaling pathway. Our findings are the first to explain the anti-inflammatory mechanism by PRE in LPS-stimulated macrophages. Given these results, we propose that PRE has therapeutic potential in the prevention of inflammatory disorders.

Keywords

References

  1. An, H. J., Kim, I. T., Park, H. J., Kim, H. M., Choi, J. H. and Lee, K. T. (2011) Tormentic acid, a triterpenoid saponin, isolated from Rosa rugosa, inhibited LPS-induced iNOS, COX-2, and TNF-alpha expression through inactivation of the nuclear factor-kappa b pathway in RAW 264.7 macrophages. Int. Immunopharmacol. 11, 504-510. https://doi.org/10.1016/j.intimp.2011.01.002
  2. Angeles Rosillo, M., Sanchez-Hidalgo, M., Cardeno, A., Aparicio-Soto, M., Sanchez-Fidalgo, S., Villegas, I. and Alarcon de la Lastra, C. (2012) Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacol. Res. 66, 235-242. https://doi.org/10.1016/j.phrs.2012.05.006
  3. Anitha, P., Priyadarsini, R. V., Kavitha, K., Thiyagarajan, P. and Nagini, S. (2013) Ellagic acid coordinately attenuates Wnt/beta-catenin and NF-kappa B signaling pathways to induce intrinsic apoptosis in an animal model of oral oncogenesis. Eur. J. Nutr. 52, 75-84. https://doi.org/10.1007/s00394-011-0288-y
  4. Boje, K. M. K. (2004) Nitric oxide neurotoxicity in neurodegenerative diseases. Front. Biosci. 9, 763-776. https://doi.org/10.2741/1268
  5. Chen, X., Zong, C., Gao, Y., Cai, R., Fang, L., Lu, J., Liu, F. and Qi, Y. (2014) Curcumol exhibits anti-inflammatory properties by interfering with the JNK-mediated AP-1 pathway in lipopolysaccharideactivated RAW264.7 cells. Eur. J. Pharmacol. 723, 339-345. https://doi.org/10.1016/j.ejphar.2013.11.007
  6. Dussossoy, E., Brat, P., Bony, E., Boudard, F., Poucheret, P., Mertz, C., Giaimis, J. and Michel, A. (2011) Characterization, anti-oxidative and anti-inflammatory effects of Costa Rican noni juice (Morinda citrifolia L.). J. Ethnopharmacol. 133, 108-115. https://doi.org/10.1016/j.jep.2010.08.063
  7. Fu, M., Ng, T. B., Jiang, Y., Pi, Z. F., Liu, Z. K., Li, L. and Liu, F. (2006) Compounds from rose (Rosa rugosa) flowers with human immunodeficiency virus type 1 reverse transcriptase inhibitory activity. J. Pharm. Pharmacol. 58, 1275-1280. https://doi.org/10.1211/jpp.58.9.0015
  8. Gu, D., Yang, Y., Bakri, M., Chen, Q., Xin, X. and Aisa, H. A. (2013) A LC/QTOF-MS/MS Application to Investigate Chemical Compositions in a Fraction with Protein Tyrosine Phosphatase 1B Inhibitory Activity from Rosa rugosa Flowers. Phytochem. Anal. 24, 661-670. https://doi.org/10.1002/pca.2451
  9. Guha, M. and Mackman, N. (2001) LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  10. Hortelano, S., Zeini, M. and Bosca, L. (2002) Nitric oxide and resolution of inflammation. Methods Enzymol. 359, 459-465. https://doi.org/10.1016/S0076-6879(02)59208-9
  11. Hsu, C. L., Fang, S. C. and Yen, G. C. (2013) Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Food Funct. 4, 1216-1222. https://doi.org/10.1039/c3fo60041f
  12. Kassim, M., Achoui, M., Mustafa, M. R., Mohd, M. A. and Yusoff, K. M. (2010) Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr. Res. 30, 650-659. https://doi.org/10.1016/j.nutres.2010.08.008
  13. Kim, K. S., Cui, X., Lee, D. S., Sohn, J. H., Yim, J. H., Kim, Y. C. and Oh, H. (2013a) Anti-Inflammatory Effect of Neoechinulin A from the Marine Fungus Eurotium sp SF-5989 through the Suppression of NF-kappa B and p38 MAPK Pathways in Lipopolysaccharide- Stimulated RAW264.7 Macrophages. Molecules 18, 13245-13259. https://doi.org/10.3390/molecules181113245
  14. Kim, K. S., Lee, D. S., Bae, G. S., Park, S. J., Kang, D. G., Lee, H. S., Oh, H. and Kim, Y. C. (2013b) The inhibition of JNK MAPK and NF-kappa B signaling by tenuifoliside A isolated from Polygala tenuifolia in lipopolysaccharide-induced macrophages is associated with its anti-inflammatory effect. Eur. J. Pharmacol. 721, 267-276. https://doi.org/10.1016/j.ejphar.2013.09.026
  15. Lee, H. S., Ryu, D. S., Lee, G. S. and Lee, D. S. (2012) Anti-inflammatory effects of dichloromethane fraction from Orostachys japonicus in RAW 264.7 cells: Suppression of NF-kappa B activation and MAPK signaling. J. Ethnopharmacol. 140, 271-276. https://doi.org/10.1016/j.jep.2012.01.016
  16. Lee, M. Y., Lee, J. A., Seo, C. S., Ha, H., Lee, H., Son, J. K. and Shin, H. K. (2011) Anti-inflammatory activity of Angelica dahurica ethanolic extract on RAW264.7 cells via upregulation of heme oxygenase-1. Food Chem. Toxicol. 49, 1047-1055. https://doi.org/10.1016/j.fct.2011.01.010
  17. Mikanagi, Y., Yokoi, M., Saito, N., Ueda, Y., Hirabayashi, H. and Suzuki, S. (1994)Flower flavonoid distribution in rosa-rugosa thunb exmurray and interspecific rosa hybrids. J. Jpn. Soc. Hortic. Sci. 62, 857-866. https://doi.org/10.2503/jjshs.62.857
  18. Moon, D. O., Kim, M. O., Lee, H. J., Choi, Y. H., Park, Y. M., Heo, M. S. and Kim, G. Y. (2008) Curcumin attenuates ovalbumin-induced airway inflammation by regulating nitric oxide. Biochem. Biophys. Res. Commun. 375, 275-279. https://doi.org/10.1016/j.bbrc.2008.08.025
  19. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and surival-application to proliferation to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  20. Nahar, P. P., Driscoll, M. V., Li, L., Slitt, A. L. and Seeram, N. P. (2014) Phenolic mediated anti-inflammatory properties of a maple syrup extract in RAW 264.7 murine macrophages. J. Funct. Foods 6, 126-136. https://doi.org/10.1016/j.jff.2013.09.026
  21. Oh, Y. C., Cho, W. K., Jeong, Y. H., Im, G. Y., Lee, K. J., Yang, H. J. and Ma, J. Y. (2013) Anti-inflammatory effect of Sosihotang via inhibition of nuclear factor-kappa B and mitogen-activated protein kinases signaling pathways in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Food Chem. Toxicol. 53, 343-351. https://doi.org/10.1016/j.fct.2012.12.006
  22. Park, J. W., Kwon, O. K., Jang, H. y., Jeong, H., Oh, S. R., Lee, H. K., Han, S. B. and Ahn, K. S. (2012) A leaf methanolic extract of wercklea insignis attenuates the lipopolysaccharide-induced inflammatory response by blocking the NF-kappa B signaling pathway in RAW 264.7 Macrophages. Inflammation 35, 321-331. https://doi.org/10.1007/s10753-011-9322-8
  23. Redington, A. E., Meng, Q. H., Springall, D. R., Evans, T. J., Creminon, C., Maclouf, J., Holgate, S. T., Howarth, P. H. and Polak, J. M. (2001) Increased expression of inducible nitric oxide synthase and cyclo-oxygenase-2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment. Thorax 56, 351-357. https://doi.org/10.1136/thorax.56.5.351
  24. Shao, J., Li, Y., Wang, Z., Xiao, M., Yin, P., Lu, Y., Qian, X., Xu, Y. and Liu, J. (2013) 7b, a novel naphthalimide derivative, exhibited anti-inflammatory effects via targeted-inhibiting TAK1 following down-regulation of ERK1/2-and p38 MAPK-mediated activation of NF-kappa B in LPS-stimulated RAW264.7 macrophages. Int. Immunopharmacol. 17, 216-228. https://doi.org/10.1016/j.intimp.2013.06.008
  25. Sugimoto, K., Sakamoto, S., Nakagawa, K., Hayashi, S., Harada, N., Yamaji, R., Nakano, Y. and Inui, H. (2011) Suppression of inducible nitric oxide synthase expression and amelioration of lipopolysaccharide- induced liver injury by polyphenolic compounds in Eucalyptus globulus leaf extract. Food Chem. 125, 442-446. https://doi.org/10.1016/j.foodchem.2010.09.026
  26. Xie, Y. and Zhang, W. (2012) Antihypertensive activity of Rosa rugosa Thunb. flowers: Angiotensin I converting enzyme inhibitor. J. Ethnopharmacol. 144, 562-566. https://doi.org/10.1016/j.jep.2012.09.038
  27. Yun, K. J., Kim, J. Y., Kim, J. B., Lee, K. W., Jeong, S. Y., Park, H. J., Jung, H. J., Cho, Y. W., Yun, K. and Lee, K. T. (2008) Inhibition of LPS-induced NO and PGE(2) production by asiatic acid via NF-kappa B inactivation in RAW 264.7 macrophages: Possible involvement of the IKK and MAPK pathways. Int. Immunopharmacol. 8, 431-441. https://doi.org/10.1016/j.intimp.2007.11.003

Cited by

  1. Hypoglycemic effect of the polyphenols rich extract from Rose rugosa Thunb on high fat diet and STZ induced diabetic rats vol.200, 2017, https://doi.org/10.1016/j.jep.2017.02.022
  2. Effect on Wnt/β-catenin Pathway of Methanol Extracts from Native Plants in Korea vol.29, pp.5, 2016, https://doi.org/10.7732/kjpr.2016.29.5.620
  3. Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2017.1357737
  4. Src/Syk-Targeted Anti-Inflammatory Actions of Triterpenoidal Saponins from Gac (Momordica cochinchinensis) Seeds vol.45, pp.03, 2017, https://doi.org/10.1142/S0192415X17500288
  5. Anti-inflammatory effect of torilidis fructus ethanol extract through inhibition of Src vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2017.1362011
  6. Rosa rugosa flavonoids alleviate myocardial ischemia reperfusion injury in mice by suppressing JNK and p38 MAPK vol.24, pp.7, 2017, https://doi.org/10.1111/micc.12385
  7. Determination of the volatile and polyphenol constituents and the antimicrobial, antioxidant, and tyrosinase inhibitory activities of the bioactive compounds from the by-product of Rosa rugosa Thunb. var. plena Regal tea vol.18, pp.1, 2018, https://doi.org/10.1186/s12906-018-2374-7
  8. Alkaloids from Tetrastigma hemsleyanum and Their Anti-Inflammatory Effects on LPS-Induced RAW264.7 Cells vol.23, pp.6, 2018, https://doi.org/10.3390/molecules23061445
  9. 오미자 박, schizandrin 및 gomisin A에 의한 RAW264.7 세포주에서 lipopolysaccharide로 유도된 염증 반응의 억제 vol.28, pp.3, 2016, https://doi.org/10.5352/jls.2018.28.3.339
  10. New Depsides and Neuroactive Phenolic Glucosides from the Flower Buds of Rugosa Rose (Rosa rugosa) vol.67, pp.26, 2016, https://doi.org/10.1021/acs.jafc.9b01228
  11. New monoterpene glucosides from Dracocephalum komarovi and their anti-inflammatory activity vol.33, pp.None, 2019, https://doi.org/10.1016/j.phytol.2019.08.005
  12. 바닷물과 조개에서 패혈증비브리오균 증식에 대한 천연물의 항균 효과 vol.52, pp.1, 2016, https://doi.org/10.9721/kjfst.2020.52.1.89
  13. Bioactivity‐guided isolation of anti‐inflammatory components from Phyllanthus emblica vol.8, pp.6, 2016, https://doi.org/10.1002/fsn3.1553
  14. Rugosic acid A, derived from Rosa rugosa Thunb., is novel inhibitory agent for NF‐κB and IL‐6/STAT3 axis in acute lung injury model vol.34, pp.12, 2016, https://doi.org/10.1002/ptr.6767
  15. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages vol.21, pp.24, 2016, https://doi.org/10.3390/ijms21249605
  16. 생약복합물 용매추출물과 조다당획분의 생리활성 vol.34, pp.1, 2016, https://doi.org/10.9799/ksfan.2021.34.1.036
  17. The Anti-Inflammatory Effect from Lipopolysaccharide-Stimulated RAW 264.7 of Extracts of Hydrangea serrata Seringe vol.50, pp.3, 2016, https://doi.org/10.3746/jkfn.2021.50.3.236
  18. Edible Flowers: Antioxidant Compounds and Their Functional Properties vol.7, pp.4, 2016, https://doi.org/10.3390/horticulturae7040066