DOI QR코드

DOI QR Code

초고속 비행체 항력 감소를 위한 플라즈마 분사장치에 대한 예비 결과

Preliminary Results on Plasma Counterflow Jets for Drag Reduction of a High Speed Vehicle

  • Kang, Seungwon (Department of Aerospace Engineering, Graduate School at Chungnam National University) ;
  • Choi, Jongin (Department of Aerospace Engineering, Graduate School at Chungnam National University) ;
  • Lee, Jaecheong (Department of Aerospace Engineering, Graduate School at Chungnam National University) ;
  • Huh, Hwanil (Department of Aerospace Engineering, Chungnam National University)
  • 투고 : 2016.09.12
  • 심사 : 2016.11.09
  • 발행 : 2016.12.01

초록

초음속 비행체의 항력 감소 기초 실험을 위한 플라즈마 분사장치의 특성에 대해 분석하였다. 플라즈마 종류는 고압에서 발생이 가능한 열 플라즈마가 적합하다. 열 플라즈마를 발생하기 위해 플라즈마 토치를 사용한다. 플라즈마 토치는 고압 고속 분사가 가능하기 때문에 플라즈마 분사 제트에 적합한 플라즈마 발생장치이다. 본 연구에서는 확보한 플라즈마 토치에 대해 분석 및 정리하였고 기초 연구를 수행하였다. 그 결과 플라즈마 제트 발생의 주요 변수로는 플라즈마 토치의 전극 간격과 공급 기체의 압력으로 고려되었다.

The characteristic analysis and fundamental test of a plasma generator is performed for drag reduction of a high speed vehicle. In high pressures, thermal plasmas is suitable for generating plasmas. The appropriate plasma torch is selected and used to generate thermal plasmas. The plasma torch, which can emit high-speed and high-pressure plasma jet, is suitable for generating plasma counterflow jet. In this study, the fundamental test and analysis for the plasma torch is summarized. Results show that supplying gas pressures and electrode gap of plasma torch are considered as critical parameters for generating plasma jets.

키워드

참고문헌

  1. McMahon, H.M., "An experimental study of the effect of mass injection at the stagnation point of a blunt body," Ph. D. Thesis, California Institute of Technology, 1958.
  2. Josyula, Eswar, Pinney, M. and William B.B., "Applications of a Counterflow Drag Reduction Technique in High-Speed Systems," Journal of Spacecraft and Rockets, Vol. 39, No. 4, pp. 605-614, 2002. https://doi.org/10.2514/2.3850
  3. Shang, J., Hayes, J., Wurtzler, K. and Strang, W., "Jet-spike Bifurcation in High-speed Flows," AIAA Journal, Vol. 39, No. 6, pp. 1159-1165, 2001. https://doi.org/10.2514/2.1430
  4. Finley. P., "The Flow of a Jet from a Body opposing a Supersonic Free Stream," Journal of Fluid Mechanics, Vol. 26, Part 2, pp. 337-368, 1966. https://doi.org/10.1017/S0022112066001277
  5. Fomin, V.M., Maslov, A.A., Shashkin, A.P., Korotaeva, T.A. and Malmuth, N.D., "Flow Regimes Formed by a Counterflow Jet in a Supersonic Flow," Journal of Applied Mechanics and Technical Physics, Vol. 42, No. 5, pp. 757-764, 2001. https://doi.org/10.1023/A:1017984124396
  6. Ganiev, Y.C., Gordeev, V.P., Krasilnikov, A.V., Lagutin, V.I., Otmennikov, V.N. and Panasenko, A.V., "Aerodynamic Drag Reduction by Plasma and Hot-Gas Injection," Journal of Thermophysics and Heat Transfer, Vol. 14, No. 1, pp. 10-17, 2000. https://doi.org/10.2514/2.6504
  7. Shang, J.S., "Plasma Injection for Hypersonic Blunt-body Drag Reduction," AIAA Journal, Vol. 40, No. 6, pp. 1178-1186, 2002. https://doi.org/10.2514/2.1769
  8. Shang, J.S., Hayes, J. and Menart., J., "Hypersonic Flow Over a Blunt Body with Plasma Injection," Journal of Spacecraft and Rockets, Vol. 39, No. 3, pp. 367-375, 2002. https://doi.org/10.2514/2.3835
  9. Mahapatra, D., Sriram, R. and Jagadeesh, G., "Effect of Counterflow Argon Plasma Jet on Aerodynamic Drag of a Blunt Body at Hypersonic Mach Numbers," Aeronautical Journal, Vol. 112, No. 1137, pp. 683-687, 2008.
  10. Kim, J.H., Kang, S.W., Lee, J.C. and Huh, H.I., "Key Parameters and Research Review on Counterflow Jet Study in USA for Drag Reduction of a High-speed Vehicle," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 1, pp. 23-32, 2016. https://doi.org/10.5139/JKSAS.2016.44.1.23
  11. Lee, J.C., Kim, J.H., Kang, S.W. and Huh, H.I., "USA Research Trends of Drag Reduction using Counter-flow Jet in High-speed Flow," The KSPE Spring Conference, Haeundae-gu, Busan, Republic of Korea, pp. 131-134, 2015.
  12. Kang, S.W., Kim, J.H., Lee, J.C. and Huh, H.I., "Introduction to Plasma Actuation System for Drag Reduction of a High-speed Vehicle," The KSPE Fall Conference, Gyeongju-si, Gyeongsangbuk-do, Korea, pp. 348-350, 2015.
  13. Boulos, Maher I., "Thermal Plasma Processing," IEEE Transactions on Plasma Science, Vol. 19, No. 6, pp. 1078-1089, 1991. https://doi.org/10.1109/27.125032
  14. CHERIC, "Applications of plasma," World Wide Web location https://www.cheric.org/files/research/ip/p200805/p200805-301.pdf, 2016.
  15. Tatarova, E., Bundaleska, N., Sarrette, J.P. and Ferreira, C.M., "Plasmas for Environmental Issues: from Hydrogen Production to 2D Materials Assembly," Plasma Sources Science and Technology, Vol. 23, No. 6, pp. 6, 2014.
  16. Boulos, Maher, I., "The Inductively Coupled RF (radio frequency) Plasma," Pure and Applied Chemistry, Vol. 57, No. 9, pp. 1321-1352, 1985. https://doi.org/10.1351/pac198557091321
  17. World Wide Web location http://www.plasma.t.u-tokyo.ac.jp/, 2016.
  18. World Wide Web location http://www.nswel.com/, 2016.
  19. Na, S.H., Plasma cutting theory and practice, Jayou Jajae, Incheon-si, Gyeonggi-do, Korea, 2010.
  20. Jung, J.W., Plasma Electronics, Cheong Moon Gak, Paju-si, Gyeonggi-do, Korea, 2013.
  21. Moon, S.Y. and Choe, W., "A Comparative Study of Rotational Temperatures using Diatomic OH, O2, N2+ Molecular Spectra Emitted from Atmospheric Plasmas," Spectrochimica acta Atomic Spectroscopy, Vol. 58, No. 2, pp. 249-257, 2003. https://doi.org/10.1016/S0584-8547(02)00259-8
  22. Moon, S.Y., Kim, M.H., Seo, J.H., Choi, C.H., Kim, J.S., Lee, M.Y. and Hong, H.G., "Visualization and Spectroscopic Diagnostics of Supersonic Plasma Flow," KSPE Fall Conference, Busan, Korea, pp. 581-585, Nov. 2011.
  23. Shin, J.C., "Gas Temperature Measurement in Supersonic Flow by N2+ Emission Spectroscopy," Transactions of the Korean Society of Mechanical Engineers-B, Vol. 34, No. 3, pp. 245-250, 2010. https://doi.org/10.3795/KSME-B.2010.34.3.245
  24. Lim, D.H., Choi, J.S. and Ko, Y.S., "Experimental Study on the Supersonic Jet Noise and Its Prediction," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 35, No. 1, pp. 27-32, 2007. https://doi.org/10.5139/JKSAS.2007.35.1.027
  25. Bae, D.S., Choi, H.A., Kam, H.D. and Kim, J.S., "A Computational Study on the Shock Structure and Thrust Performance of a Supersonic Nozzle with Overexpanded Flow," Journal of the Korean Society of Propulsion Engineers, Vol. 18, No. 4, pp. 1-8, 2014. https://doi.org/10.6108/KSPE.2014.18.4.001