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벡터 블룸 필터를 사용한 IP 주소 검색 알고리즘

IP Address Lookup Algorithm Using a Vectored Bloom Filter

변 하 영* ․ 임 혜 숙

(Hayoung Byun ․ Hyesook Lim)

Abstract - A Bloom filter is a space-efficient data structure popularly applied in many network algorithms. This paper 

proposes a vectored Bloom filter to provide a high-speed Internet protocol (IP) address lookup. While each hash index for a 

Bloom filter indicates one bit, which is used to identify the membership of the input, each index of the proposed vectored 

Bloom filter indicates a vector which is used to represent the membership and the output port for the input. Hence the 

proposed Bloom filter can complete the IP address lookup without accessing an off-chip hash table for most cases. Simulation 

results show that with a reasonable sized Bloom filter that can be stored using an on-chip memory, an IP address lookup can 

be performed with less than 0.0003 off-chip accesses on average in our proposed architecture.

Key Words : Bloom filter, IP address lookup, Vectored bloom filter

Corresponding Author : Dept. of Electronic and Electrical 

Engineering, Ewha Womans University, Korea. 

   E-mail: hlim@ewha.ac.kr

* Dept. of Electronic and Electrical Engineering, Ewha Womans 

University, Korea.

Received : February 11, 2016; Accepted : November 7, 2016

1. Introduction

An IP address consists of a network part (called a prefix) 

and a host part. The network part identifies a group of 

hosts included in a network and the host part identifies a 

specific host [1]. Under a class-based addressing scheme, 

the length of the network part was fixed as 8, 16, or 24 

bits. An exact matching operation was performed for an IP 

address lookup to forward each packet toward a final 

destination at Internet routers. However, excessive prefix 

waste was caused by the inflexibility in network sizes under 

the class-based addressing scheme. A new addressing 

scheme called classless inter-domain routing (CIDR) is 

currently being used. The CIDR allows variable-length 

prefixes, and the Internet routers use the longest prefix of 

all matching prefixes as the best matching prefix (BMP) to 

forward each input packet to the most specific network 

[2-5].

Today, as the speed of Internet traffic continues to increase 

exponentially, users utilize a variety of network applications 

demanding real-time services. Hence, the IP address lookup 

has become one of the most challenging functionalities that 

need to be performed at wire-speed. Various IP address lookup 

algorithms have been studied such as trie-based [4-5], 

hashing-based [6], and Bloom filter-based algorithms [7-9]. 

Because of their sizes, the trie and the hash table are usually 

stored using off-chip memories, and IP address lookup 

procedures are completed through off-chip memory accesses. 

However, an access to an off-chip memory is 10 to 20 times 

slower than access to an on-chip memory [10]. An on-chip 

Bloom filter has been used to reduce the number of off-chip 

memory accesses [7-9].

In this paper, we propose a new Bloom filter-based IP 

address lookup algorithm using a vectored Bloom filter (VBF). 

The remainder of this paper is organized as follows. Section 

2 describes related works and Section 3 introduces our 

proposed IP address lookup algorithm. Section 4 evaluates and 

compares the performance of our proposed algorithm with 

previous BF-based algorithms and Section 5 concludes the 

paper.

2. Related Works

2.1 Bloom Filter

A Bloom filter [11] is a bit-vector-based data structure 

used to represent a data set and to answer membership 

queries. Bloom filters have been popularly used in many 

network algorithms because of their space efficiency [12]. A 

Bloom filter involves two operations: programming and 

querying.
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Fig. 1 Vectored Bloom filter structure

Algorithm 1 Basic VBF Programming Procedure
Function programVBF(x)

for (i = 1 → k)
  if (BF[hi(x)] == NULL) then

 BF[hi(x)] ← x.port;
    else if (BF[hi(x)] != x.port) then
      for (j = 0 → l-1)
        BF[hi(x)][j] ← 1;  // conflict   
      end for
    end if
  end for
end Function

A Bloom filter is an array of m bits, which are initially set 

to 0. In programming, every element in a set S = {x1, x2 , …, 

xn} is programmed to the Bloom filter using k independent 

hash functions, each of which is used to map an element to a 

random number with a range {1, …, m}. To insert an element, 

the k bits corresponding to the k hash indices are set to 1. 

For n given elements, the optimal number of hash functions is 

k = (m/n) ln2.

Using the same k hash functions as those used in the 

programming, querying is performed to check whether an 

input is the member of the set. In querying an input, if any 

of the k bits are 0, the input is definitely not a member of 

set S, and it is defined as a negative. If all the k bits are 1, 

the input is identified as a member of set S, and it is 

defined as a positive. 

A Bloom filter can produce false positives due to hash 

collision; an input y∉ S can have k hash indices 

corresponding to k bits set to 1. False positives can be 

improved by increasing the size of the Bloom filter, but 

cannot be completely eliminated. However, the negative 

results of the Bloom filter are always true.

2.2 Bloom Filter-Based IP Address Lookup Algorithms

Dharmapurikar et al. proposed an IP address lookup 

algorithm by employing Bloom filters [7]. Their structure 

consists of W Bloom filters which are queried in parallel, where 

W is the number of different prefix lengths. For the lengths 

with positive results, an off-chip hash table is probed and 

returns the output port corresponding to the longest matching 

prefix. 

Lim et al. proposed to add a Bloom filter to trie-based 

algorithms [9]. In performing a binary search on trie 

levels [13-14], an on-chip Bloom filter is used to reduce 

the number of hash table accesses by producing negative 

results for non-existing nodes.

In the Bloom filter chaining approach proposed by Mun et 

al. [15], an on-chip Bloom filter is programmed for each node 

in a trie and is sequentially queried as increasing the trie level. 

For a specific length of a given input, if a negative result is 

produced, it means that no node appears at the current level 

and at longer levels for the path of the input. Hence, an 

off-chip hash table is accessed for the last positive level. False 

positives of the Bloom filter can cause back-tracking to a 

shorter level.

3. Proposed Algorithm

The proposed vectored Bloom filter (VBF) is an m multi-bit 

array, which contains an output port in each vector. Our 

proposed structure completes the IP address lookups by 

querying only the VBF without accessing the off-chip hash 

table. The hash table is constructed using an off-chip 

memory for the case where an output port is not determined 

through the VBF. Fig. 1 shows the vectored Bloom filter 

structure. 

3.1 Basic Vectored Bloom Filter Algorithm

As shown in Fig. 1, each hash index for the VBF points 

to l bits which represent an output port. In our proposed 

approach, if all of the l bits for any single vector are 0, it 

is defined as a negative, and it means that the vector is 

not programed by any prefix. If all of the l bits for a 

single vector are 1, it is defined as a conflict, and it 

means that the vector is programed by two or more 

different prefixes. Hence, an l-bit vector can represent 

up to 2l-2 output ports.

In the construction procedure, every prefix in a routing 

table is programmed into the VBF and is stored in the hash 

table. Algorithm 1 describes the details in programming the 

basic VBF. For a prefix x which has output port x.port, k 

hash indices are obtained. The k vectors corresponding to the 

hash indices are written by x.port. If any of the vectors 

already have an output port other than x.port, the vector is 

written by all 1s to represent the conflict. This procedure is 

repeated for every prefix included in the routing table. 

Algorithm 2 describes the details in querying the basic 
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Algorithm 2 Basic VBF Querying Procedure
Function queryVBF(y)

check ← BF[h0(y)] & BF[h1(y)] & … & BF[hk-1(y)];
counter ← 0;
if (all bits in check is 0) then
    return 0;  //negative 
else if (all bits in check is 1) then
    return -1;  //conflict
else
  for (i = 1 → k) 
    if (check == BF[hi(y)]) then
      counter ← counter + 1;
    else if (all bits in BF[hi(y)] is 1) then
        counter ← counter + 1;
    end if
  end for
  if (counter < k) then
    return 0;  //   negative
  else 
    outPort ← convert_decimal(check); 

      return outPort;   // positive
    end if
  end if
end Function

Fig. 2 The search procedure of proposed algorithms

Algorithm 3 VBF Search Procedure
Function Search(DstAddr)

for (length = longestLen → shortestLen)
  if (queryVBF(DstAddr.length) == -1) then  
    // conflict

 BMPport ← searchHT(DstAddr.length);
 if (BMPport != NULL) then
   break;  // no more Bloom filter access
 end if

    else if (queryVBF(DstAddr.length) == 0) then
      continue;  // negative
    else        // positive
      BMPport ← queryVBF(DstAddr.length);
      break;
    end if

end for
return BMPport;

end Function

Algorithm 4 Refined VBF Programming Procedure
Function programVBF(x)

for (i = 1 → k)
  BF[hi(x)][ x.port-1] ← 1;

  end for
end Function

VBF. We use ‘AND’ operation in this algorithm. For example, 

suppose we use three 4-bit vectors; k = 3 and l = 4. If the 

result of ‘AND’ operation with 3 vectors is 0000, it indicates a 

negative result. If the result is 1111, it indicates a conflict 

result. If the result is neither 0000 nor 1111, we should check 

whether it is a positive result. For example, if the three 4-bit 

vectors are 1111, 0001, and 0011, it is clearly a negative result 

because two different output ports are programmed to the 

vectors. We implemented this function as follows. Since the 

result of AND operation of these three vectors is 0001, we 

count the number of 0001 and 1111. If the counting result is 

less than k, which is 2 in this example, it is a negative. If it 

is the same as k, it returns the output port.

The search procedure for the proposed IP address lookup 

algorithm is shown in Fig. 2 and Algorithm 3. For a given 

input address, starting from the longest length of prefixes, 

the VBF is queried and k vectors are obtained. If the VBF 

querying returns the conflict, whether the given input has a 

matching prefix in the current length is not determined. 

Hence the off-chip hash table should be accessed. If the 

hash table returns an output port for the current length, 

the search procedure is finished. Otherwise, the search 

procedure continues to a shorter length.

3.2 Refined Vectored Bloom Filter Algorithm

A drawback of the basic VBF algorithm described in 3.1 

is that a vector becomes useless when being programmed 

with the conflict. The proposed algorithm is refined to 

utilize the information included in the conflict vectors. In 

the refined structure, one bit is allocated for each output 

port. For each of the k vectors obtained for a prefix, the 

bit location of the output port corresponding to this prefix 

is set. The structure of this refined algorithm is the same 

as Fig. 1, an l-bit vector can represent l different output 

ports in the refined structure, while it can represent 2l-2 

output ports in the basic structure. 

Algorithm 4 describes programming procedure of the 

refined VBF. In programming a prefix, each bit of the k 

vectors, which corresponds to the output port of the prefix, 

is changed to 1. Hence, even though different ports have 

already been programmed in a vector, the vector is not 

required to indicate the conflict. Note that each row of the 
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Algorithm 5 Refined VBF Querying Procedure
Function queryVBF(y)

check ← BF[h0(y)] & BF[h1(y)] & … & BF[hk-1(y)];
counter ← 0;
for (i = 0 → l-1)
  if (check[i] == true) then
    outPort ← i + 1;
    counter ← counter + 1;
    if (counter > 1) then
      break;
    end if
  end if
end for
if (counter == 0) then
  return 0; // negative
else if (counter >   1) then
  return -1; //conflict
else if (counter == 1) the
  return outPort; // positive
end if

end Function

Fig. 3 Port conflict rate according to Bloom filter sizes 

(Proposed Basic Structure)

refined VBF represents the membership of the prefixes 

having the same output port. Assuming that prefixes are 

evenly distributed to each output port, each row of the 

refined VBF is programmed by n/l prefixes.

Algorithm 5 describes the querying procedure of the 

refined VBF. If none of the vectors obtained for a specific 

length of the input have a common bit set to 1, it is a 

negative result. If all vectors have two or more common 

bits set, it is the conflict case. If a specific bit location of 

all vectors is set, it is the output port of the matching 

prefix. We also use ‘AND’ operation to implement this. Since 

the set positions in the result of ‘AND’ operation denote 

programmed ports, we count the number of 1s in the result. 

For example, suppose we use three 4-bit vectors; k = 3 

and l = 4. If the result of ‘AND’ operation is 0000, it 

indicates a negative result. If the result of ‘AND’ operation 

has a single bit set, it indicates a positive result, in which 

the set position indicates the output port. The conflict is 

indicated when the number of 1s in the result of ‘AND’ 

operation is more than 1.

The search procedure for the refined algorithm is the 

same as the basic algorithm shown in Algorithm 3.

4. Performance Evaluation

Performance evaluation was carried out with C language 

using routing tables downloaded from five backbone routers. 

The hash function used for our simulation is a 64-bit cyclic 

redundancy check (CRC) generator. Multiple hash indices 

with variable lengths are obtained by combining a variable 

number of bits of the CRC code. Assuming that the number 

of output ports is 32, 6 bits and 32 bits are allocated for 

each vector of the Bloom filter in the basic structure and 

the refined structure, respectively. 

The port conflict rate is defined as the ratio of inputs, in 

which the output port is not identified by the Bloom filter 

querying because of vector conflict. Hence it indicates the 

ratio of inputs that should access the off-chip hash table. 

The wrong port rate is defined as the ratio of inputs, in 

which the Bloom filter provides a wrong result because of a 

false positive. For the number of elements T programmed to a 

Bloom filter, the size of a Bloom filter m = αT’, where T’ = 


⌈ log⌉  and α = 4, 8, and 16. The optimal number of hash 

functions is k = (m/T’ ) ln2 in the basic structure, while the 

optimal number of hash functions is k = (m/R’ ) ln2 in refined 

structure, where R is the number of prefixes belong to a 

single port, and R’ = 
⌈ log⌉ . If we assume that prefixes are 

evenly distributed to each output port, R = T/l. 

Fig. 3 shows the port conflict rate according to Bloom 

filter sizes. Since the refined structure did not cause any 

port conflict, we do not show the port conflict rate for the 

refined structure in Fig. 3. Note that the port conflict rate 

is close to 0% for 16T’.

Fig. 4 shows the wrong port rate for the basic structure 

where α = 4, 8, and 16, and for the refined structure where 

α=1 and 2. Note that the wrong port rate converges to 0% 

for 16T’ in the basic structure and for 2T’ in the refined 

structure. 

Table 1 compares on-chip memory requirements for Bloom 

filters. The WBSL-BF and LBSL-BF are algorithms proposed 

in [9], in which a Bloom filter is added to Waldvogel’s binary 

search on trie levels (WBSL) [13] and to Lim’s binary search 
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 (a) Proposed basic structure (b) Proposed refined structure

Fig. 4 Wrong port rate according to Bloom filter sizes

Routing Data(N) α
WBSL-BF LBSL-BF Chaining-PC Chaining-LP Prop-Basic

α
Prop-Ref

T Mb(kB) T Mb(kB) T Mb(kB) T Mb(kB) T Mb(kB) T Mb(kB)

MAE-WEST

(14553)

4

76708

64

82156

64

76708

64

82156

64

14553

48 1

14553

64

8 128 128 128 128 96 2 128

16 256 256 256 256 192 - -

MAE-EAST

(39464)

4

172418

128

191757

128

172418

128

191757

128

39464

192 1

39464

256

8 256 256 256 256 384 2 512

16 512 512 512 512 768 - -

PORT80

(112310)

4

225050

128

299899

256

225050

128

299899

256

112310

384 1

112310

512

8 256 512 256 512 768 2 1024

16 512 1024 512 1024 1536 - -

Grouptlcom

(170601)

4

314986

256

411122

256

314986

256

411122

256

170601

768 1

170601

1024

8 512 512 512 512 1536 2 2048

16 1024 1024 1024 1024 3072 - -

Telstra

(227223)

4

452732

256

576370

512

452732

256

576370

512

227223

768 1

227223

1024

8 512 1024 512 1024 1536 2 2048

16 1024 2048 1024 2048 3072 - -

Table 1 Comparison of On-Chip Memory Requirement for Bloom Filters 

(N = number of prefixes, T = number of elements programmed to the Bloom filter, Mb = memory requirement of 

the Bloom filter)

on trie levels (LBSL) [14], respectively. The Chaining-PC and 

the Chaining-LP are the algorithms proposed in [15], which 

perform linear querying to the Bloom filter programmed for 

nodes in a BMP pre-computed (PC) trie and a leaf-pushing 

(LP) trie, respectively. In this table, N is the number of 

prefixes, T is the number of elements programmed to the 

Bloom filter, and Mb is the memory size in Kilobytes (KB) for 

the size of a Bloom filter m = αT’, where T’ = 
⌈ log⌉  and 

α = 4, 8, and 16 in basic structure and α = 1 and 2 in refined 

structure. 

While every node in a trie is programmed to the Bloom 

filter for other algorithms, prefixes only are programmed in 

our proposed algorithms. Since each location of the Bloom 

filter is a vector storing an output port, the memory 

requirement for a Bloom filter is greater in our proposed 

algorithm. Since the port conflict rate and the wrong port 

rate are both 0% for 2T’ in our refined algorithm, the 

simulation from 4T’ is not performed. In our proposed 

algorithms, the maximum memory requirement is 3MB, and 

hence the Bloom filter can be accommodated in an on-chip 
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Routing Data

(N )

WBSL-BF LBSL-BF Chaining-PC Chaining-LP Prop-Basic Prop-Ref

Nh Mh(kB) Nh Mh(kB) Nh Mh(kB) Nh Mh(kB) Nh Mh(kB) Nh Mh(kB)

MAE-WEST

(14553)
76708 449.46 82156 481.38 62763 367.75 62685 367.29 14553 85.27 14553 85.27

MAE-EAST

(39464)
172418 1010.26 191757 1123.58 134766 789.64 134139 785.97 39464 231.23 39464 231.23

PORT80

(112310)
225050 1318.65 299899 1757.22 179069 1049.23 154767 906.84 112310 658.07 112310 658.07

Grouptlcom

(170601)
314986 1845.62 411122 2408.92 246544 1444.59 208168 1219.73 170601 999.62 170601 999.62

Telstra

(227223)
452732 2652.73 576370 3377.17 329929 1933.18 290768 1703.72 227223 1331.38 227223 1331.38

Table 2 Comparison of Off-Chip Memory Requirements for Hash Tables 

(N = number of prefixes, Nh = number of hash table entries, Mh = memory requirement of the hash table)

Routing 

Data(N)
α

WBSL-BF LBSL-BF Chaining-PC Chaining-LP Prop-Basic
α

Prop-Ref

Ab Wb Ab Wb Ab Wb Ab Wb Ab Wb Ab Wb

MAE-WEST

(14553)

4

4.36 5 4.89 5

15.91

22

14.94

22

7.42

22

1 8.16

228 15.87 14.89 8.16 2 8.16

16 15.87 14.89 8.16 - -

MAE-EAST

(39464)

4

4.33 5 4.75 5

16.24

22

13.28

22

7.72

22

1 7.88

228 16.17 13.20 7.88 2 7.88

16 16.17 13.20 7.88 - -

PORT80

(112310)

4

4.72 5 4.71 5

15.26

25

15.39

25

10.71

25

1 11.96

258 15.16 15.35 11.95 2 11.96

16 15.15 15.34 11.96 - -

Grouptlcom

(170601)

4

4.67 5 4.57 5

15.36

20

15.59

20

6.61

20

1 6.77

208 15.32 15.50 6.77 2 6.77

16 15.31 15.49 6.77 - -

Telstra

(227223)

4

4.78 5 4.77 5

17.58

25

17.65

25

8.47

25

1 9.43

258 17.48 17.61 9.43 2 9.43

16 17.47 17.61 9.43 - -

Table 3 Comparison of the number of On-Chip Bloom Filter Querying 

(N = number of prefixes, Ab = average number of Bloom filter accesses, Wb = worst-case number of Bloom filter 

accesses)

memory.

Table 2 shows the off-chip memory requirement for a 

hash table, where Nh is the number of hash table entries 

and Mh is the memory requirement of the hash table in 

Kilobytes (KB). The memory requirements for hash tables in 

our proposed algorithms are estimated as 6N bytes, where N 

is the number of prefixes in a routing table. Our proposed 

algorithms require the smallest off-chip memories because 

prefixes only are stored in the hash tables.

Table 3 shows the average number and the worst-case 

number of Bloom filter accesses stored in the on-chip 

memory. The Ab and Wb are the average number and the 

worst-case number of Bloom filter accesses, respectively. The 

BSL algorithms provide search performance of O(logW), where 

the length of IP address W is 32 for IPv4. BF-chaining and 

our proposed algorithms are based on linear search on the 

length, and hence the search performance is O(W). However, 

our algorithms have better performance than the BF-chaining, 

because our approach proceeds from the longest to the 

shortest length, while the BF-chaining proceeds from the 

shortest to the longest length. In case of 16T’ in the basic 

algorithm and 1T’ in the refined algorithm, an IP lookup is 
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performed only through the VBF queries of 6.77 to 11.96 in 

average. The Wb of our algorithms is less than 32 because the 

Bloom filter is queried for valid lengths which include at least 

one prefixes.

The IP address lookup performance mainly depends on the 

number of off-chip table accesses. Table 4 shows the average 

number and the worst-case number of hash table accesses 

stored in the off-chip memory. The Ah and Wh are the 

average number and the worst-case number of hash table 

accesses, respectively. All previous algorithms should access 

the hash table at least once to obtain a matching output port. 

However, in our proposed algorithm, the hash table is 

accessed only when port conflicts occur. Hence, the average 

number becomes 0 as the Bloom filter size increases. It is 

shown that the proposed refined structure does not require 

off-chip hash table accesses at all.

5. Conclusion

In this paper, we proposed a new IP address lookup 

algorithm using a vectored Bloom filter. The vectored Bloom 

filter can answer membership queries with output ports. The 

proposed approach improves the address lookup performance 

by decreasing the number of off-chip memory accesses since 

the off-chip hash table is accessed only when port conflicts 

occur. The simulation result showed that the port conflict rate 

and the wrong port rate both converge to 0% as the size of 

the vectored Bloom filter increases. Hence, the proposed 

algorithm can provide the IP address lookup without an off- 

chip hash table access.
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