
ISSN 1975-8359(Print) / ISSN 2287-4364(Online)

The Transactions of the Korean Institute of Electrical Engineers Vol. 65, No. 12, pp. 2061 2068, 2016

http://dx.doi.org/10.5370/KIEE.2016.65.12.2061

Copyright ⓒ The Korean Institute of Electrical Engineers 2061

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/

licenses/by-nc/3.0/)which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

벡터 블룸 필터를 사용한 IP 주소 검색 알고리즘

IP Address Lookup Algorithm Using a Vectored Bloom Filter

변 하 영* ․ 임 혜 숙

(Hayoung Byun ․ Hyesook Lim)

Abstract - A Bloom filter is a space-efficient data structure popularly applied in many network algorithms. This paper

proposes a vectored Bloom filter to provide a high-speed Internet protocol (IP) address lookup. While each hash index for a

Bloom filter indicates one bit, which is used to identify the membership of the input, each index of the proposed vectored

Bloom filter indicates a vector which is used to represent the membership and the output port for the input. Hence the

proposed Bloom filter can complete the IP address lookup without accessing an off-chip hash table for most cases. Simulation

results show that with a reasonable sized Bloom filter that can be stored using an on-chip memory, an IP address lookup can

be performed with less than 0.0003 off-chip accesses on average in our proposed architecture.

Key Words : Bloom filter, IP address lookup, Vectored bloom filter

Corresponding Author : Dept. of Electronic and Electrical

Engineering, Ewha Womans University, Korea.

 E-mail: hlim@ewha.ac.kr

* Dept. of Electronic and Electrical Engineering, Ewha Womans

University, Korea.

Received : February 11, 2016; Accepted : November 7, 2016

1. Introduction

An IP address consists of a network part (called a prefix)

and a host part. The network part identifies a group of

hosts included in a network and the host part identifies a

specific host [1]. Under a class-based addressing scheme,

the length of the network part was fixed as 8, 16, or 24

bits. An exact matching operation was performed for an IP

address lookup to forward each packet toward a final

destination at Internet routers. However, excessive prefix

waste was caused by the inflexibility in network sizes under

the class-based addressing scheme. A new addressing

scheme called classless inter-domain routing (CIDR) is

currently being used. The CIDR allows variable-length

prefixes, and the Internet routers use the longest prefix of

all matching prefixes as the best matching prefix (BMP) to

forward each input packet to the most specific network

[2-5].

Today, as the speed of Internet traffic continues to increase

exponentially, users utilize a variety of network applications

demanding real-time services. Hence, the IP address lookup

has become one of the most challenging functionalities that

need to be performed at wire-speed. Various IP address lookup

algorithms have been studied such as trie-based [4-5],

hashing-based [6], and Bloom filter-based algorithms [7-9].

Because of their sizes, the trie and the hash table are usually

stored using off-chip memories, and IP address lookup

procedures are completed through off-chip memory accesses.

However, an access to an off-chip memory is 10 to 20 times

slower than access to an on-chip memory [10]. An on-chip

Bloom filter has been used to reduce the number of off-chip

memory accesses [7-9].

In this paper, we propose a new Bloom filter-based IP

address lookup algorithm using a vectored Bloom filter (VBF).

The remainder of this paper is organized as follows. Section

2 describes related works and Section 3 introduces our

proposed IP address lookup algorithm. Section 4 evaluates and

compares the performance of our proposed algorithm with

previous BF-based algorithms and Section 5 concludes the

paper.

2. Related Works

2.1 Bloom Filter

A Bloom filter [11] is a bit-vector-based data structure

used to represent a data set and to answer membership

queries. Bloom filters have been popularly used in many

network algorithms because of their space efficiency [12]. A

Bloom filter involves two operations: programming and

querying.

전기학회논문지 65권 12호 2016년 12월

2062

Fig. 1 Vectored Bloom filter structure

Algorithm 1 Basic VBF Programming Procedure
Function programVBF(x)

for (i = 1 → k)
 if (BF[hi(x)] == NULL) then

 BF[hi(x)] ← x.port;
 else if (BF[hi(x)] != x.port) then
 for (j = 0 → l-1)
 BF[hi(x)][j] ← 1; // conflict
 end for
 end if
 end for
end Function

A Bloom filter is an array of m bits, which are initially set

to 0. In programming, every element in a set S = {x1, x2 , …,

xn} is programmed to the Bloom filter using k independent

hash functions, each of which is used to map an element to a

random number with a range {1, …, m}. To insert an element,

the k bits corresponding to the k hash indices are set to 1.

For n given elements, the optimal number of hash functions is

k = (m/n) ln2.

Using the same k hash functions as those used in the

programming, querying is performed to check whether an

input is the member of the set. In querying an input, if any

of the k bits are 0, the input is definitely not a member of

set S, and it is defined as a negative. If all the k bits are 1,

the input is identified as a member of set S, and it is

defined as a positive.

A Bloom filter can produce false positives due to hash

collision; an input y∉ S can have k hash indices

corresponding to k bits set to 1. False positives can be

improved by increasing the size of the Bloom filter, but

cannot be completely eliminated. However, the negative

results of the Bloom filter are always true.

2.2 Bloom Filter-Based IP Address Lookup Algorithms

Dharmapurikar et al. proposed an IP address lookup

algorithm by employing Bloom filters [7]. Their structure

consists of W Bloom filters which are queried in parallel, where

W is the number of different prefix lengths. For the lengths

with positive results, an off-chip hash table is probed and

returns the output port corresponding to the longest matching

prefix.

Lim et al. proposed to add a Bloom filter to trie-based

algorithms [9]. In performing a binary search on trie

levels [13-14], an on-chip Bloom filter is used to reduce

the number of hash table accesses by producing negative

results for non-existing nodes.

In the Bloom filter chaining approach proposed by Mun et

al. [15], an on-chip Bloom filter is programmed for each node

in a trie and is sequentially queried as increasing the trie level.

For a specific length of a given input, if a negative result is

produced, it means that no node appears at the current level

and at longer levels for the path of the input. Hence, an

off-chip hash table is accessed for the last positive level. False

positives of the Bloom filter can cause back-tracking to a

shorter level.

3. Proposed Algorithm

The proposed vectored Bloom filter (VBF) is an m multi-bit

array, which contains an output port in each vector. Our

proposed structure completes the IP address lookups by

querying only the VBF without accessing the off-chip hash

table. The hash table is constructed using an off-chip

memory for the case where an output port is not determined

through the VBF. Fig. 1 shows the vectored Bloom filter

structure.

3.1 Basic Vectored Bloom Filter Algorithm

As shown in Fig. 1, each hash index for the VBF points

to l bits which represent an output port. In our proposed

approach, if all of the l bits for any single vector are 0, it

is defined as a negative, and it means that the vector is

not programed by any prefix. If all of the l bits for a

single vector are 1, it is defined as a conflict, and it

means that the vector is programed by two or more

different prefixes. Hence, an l-bit vector can represent

up to 2l-2 output ports.

In the construction procedure, every prefix in a routing

table is programmed into the VBF and is stored in the hash

table. Algorithm 1 describes the details in programming the

basic VBF. For a prefix x which has output port x.port, k

hash indices are obtained. The k vectors corresponding to the

hash indices are written by x.port. If any of the vectors

already have an output port other than x.port, the vector is

written by all 1s to represent the conflict. This procedure is

repeated for every prefix included in the routing table.

Algorithm 2 describes the details in querying the basic

Trans. KIEE. Vol. 65, No. 12, DEC, 2016

벡터 블룸 필터를 사용한 IP 주소 검색 알고리즘 2063

Algorithm 2 Basic VBF Querying Procedure
Function queryVBF(y)

check ← BF[h0(y)] & BF[h1(y)] & … & BF[hk-1(y)];
counter ← 0;
if (all bits in check is 0) then
 return 0; //negative
else if (all bits in check is 1) then
 return -1; //conflict
else
 for (i = 1 → k)
 if (check == BF[hi(y)]) then
 counter ← counter + 1;
 else if (all bits in BF[hi(y)] is 1) then
 counter ← counter + 1;
 end if
 end for
 if (counter < k) then
 return 0; // negative
 else
 outPort ← convert_decimal(check);

 return outPort; // positive
 end if
 end if
end Function

Fig. 2 The search procedure of proposed algorithms

Algorithm 3 VBF Search Procedure
Function Search(DstAddr)

for (length = longestLen → shortestLen)
 if (queryVBF(DstAddr.length) == -1) then
 // conflict

 BMPport ← searchHT(DstAddr.length);
 if (BMPport != NULL) then
 break; // no more Bloom filter access
 end if

 else if (queryVBF(DstAddr.length) == 0) then
 continue; // negative
 else // positive
 BMPport ← queryVBF(DstAddr.length);
 break;
 end if

end for
return BMPport;

end Function

Algorithm 4 Refined VBF Programming Procedure
Function programVBF(x)

for (i = 1 → k)
 BF[hi(x)][x.port-1] ← 1;

 end for
end Function

VBF. We use ‘AND’ operation in this algorithm. For example,

suppose we use three 4-bit vectors; k = 3 and l = 4. If the

result of ‘AND’ operation with 3 vectors is 0000, it indicates a

negative result. If the result is 1111, it indicates a conflict

result. If the result is neither 0000 nor 1111, we should check

whether it is a positive result. For example, if the three 4-bit

vectors are 1111, 0001, and 0011, it is clearly a negative result

because two different output ports are programmed to the

vectors. We implemented this function as follows. Since the

result of AND operation of these three vectors is 0001, we

count the number of 0001 and 1111. If the counting result is

less than k, which is 2 in this example, it is a negative. If it

is the same as k, it returns the output port.

The search procedure for the proposed IP address lookup

algorithm is shown in Fig. 2 and Algorithm 3. For a given

input address, starting from the longest length of prefixes,

the VBF is queried and k vectors are obtained. If the VBF

querying returns the conflict, whether the given input has a

matching prefix in the current length is not determined.

Hence the off-chip hash table should be accessed. If the

hash table returns an output port for the current length,

the search procedure is finished. Otherwise, the search

procedure continues to a shorter length.

3.2 Refined Vectored Bloom Filter Algorithm

A drawback of the basic VBF algorithm described in 3.1

is that a vector becomes useless when being programmed

with the conflict. The proposed algorithm is refined to

utilize the information included in the conflict vectors. In

the refined structure, one bit is allocated for each output

port. For each of the k vectors obtained for a prefix, the

bit location of the output port corresponding to this prefix

is set. The structure of this refined algorithm is the same

as Fig. 1, an l-bit vector can represent l different output

ports in the refined structure, while it can represent 2l-2

output ports in the basic structure.

Algorithm 4 describes programming procedure of the

refined VBF. In programming a prefix, each bit of the k

vectors, which corresponds to the output port of the prefix,

is changed to 1. Hence, even though different ports have

already been programmed in a vector, the vector is not

required to indicate the conflict. Note that each row of the

전기학회논문지 65권 12호 2016년 12월

2064

Algorithm 5 Refined VBF Querying Procedure
Function queryVBF(y)

check ← BF[h0(y)] & BF[h1(y)] & … & BF[hk-1(y)];
counter ← 0;
for (i = 0 → l-1)
 if (check[i] == true) then
 outPort ← i + 1;
 counter ← counter + 1;
 if (counter > 1) then
 break;
 end if
 end if
end for
if (counter == 0) then
 return 0; // negative
else if (counter > 1) then
 return -1; //conflict
else if (counter == 1) the
 return outPort; // positive
end if

end Function

Fig. 3 Port conflict rate according to Bloom filter sizes

(Proposed Basic Structure)

refined VBF represents the membership of the prefixes

having the same output port. Assuming that prefixes are

evenly distributed to each output port, each row of the

refined VBF is programmed by n/l prefixes.

Algorithm 5 describes the querying procedure of the

refined VBF. If none of the vectors obtained for a specific

length of the input have a common bit set to 1, it is a

negative result. If all vectors have two or more common

bits set, it is the conflict case. If a specific bit location of

all vectors is set, it is the output port of the matching

prefix. We also use ‘AND’ operation to implement this. Since

the set positions in the result of ‘AND’ operation denote

programmed ports, we count the number of 1s in the result.

For example, suppose we use three 4-bit vectors; k = 3

and l = 4. If the result of ‘AND’ operation is 0000, it

indicates a negative result. If the result of ‘AND’ operation

has a single bit set, it indicates a positive result, in which

the set position indicates the output port. The conflict is

indicated when the number of 1s in the result of ‘AND’

operation is more than 1.

The search procedure for the refined algorithm is the

same as the basic algorithm shown in Algorithm 3.

4. Performance Evaluation

Performance evaluation was carried out with C language

using routing tables downloaded from five backbone routers.

The hash function used for our simulation is a 64-bit cyclic

redundancy check (CRC) generator. Multiple hash indices

with variable lengths are obtained by combining a variable

number of bits of the CRC code. Assuming that the number

of output ports is 32, 6 bits and 32 bits are allocated for

each vector of the Bloom filter in the basic structure and

the refined structure, respectively.

The port conflict rate is defined as the ratio of inputs, in

which the output port is not identified by the Bloom filter

querying because of vector conflict. Hence it indicates the

ratio of inputs that should access the off-chip hash table.

The wrong port rate is defined as the ratio of inputs, in

which the Bloom filter provides a wrong result because of a

false positive. For the number of elements T programmed to a

Bloom filter, the size of a Bloom filter m = αT’, where T’ =


⌈ log⌉ and α = 4, 8, and 16. The optimal number of hash

functions is k = (m/T’) ln2 in the basic structure, while the

optimal number of hash functions is k = (m/R’) ln2 in refined

structure, where R is the number of prefixes belong to a

single port, and R’ = 
⌈ log⌉ . If we assume that prefixes are

evenly distributed to each output port, R = T/l.

Fig. 3 shows the port conflict rate according to Bloom

filter sizes. Since the refined structure did not cause any

port conflict, we do not show the port conflict rate for the

refined structure in Fig. 3. Note that the port conflict rate

is close to 0% for 16T’.

Fig. 4 shows the wrong port rate for the basic structure

where α = 4, 8, and 16, and for the refined structure where

α=1 and 2. Note that the wrong port rate converges to 0%

for 16T’ in the basic structure and for 2T’ in the refined

structure.

Table 1 compares on-chip memory requirements for Bloom

filters. The WBSL-BF and LBSL-BF are algorithms proposed

in [9], in which a Bloom filter is added to Waldvogel’s binary

search on trie levels (WBSL) [13] and to Lim’s binary search

Trans. KIEE. Vol. 65, No. 12, DEC, 2016

벡터 블룸 필터를 사용한 IP 주소 검색 알고리즘 2065

 (a) Proposed basic structure (b) Proposed refined structure

Fig. 4 Wrong port rate according to Bloom filter sizes

Routing Data(N) α
WBSL-BF LBSL-BF Chaining-PC Chaining-LP Prop-Basic

α
Prop-Ref

T Mb(kB) T Mb(kB) T Mb(kB) T Mb(kB) T Mb(kB) T Mb(kB)

MAE-WEST

(14553)

4

76708

64

82156

64

76708

64

82156

64

14553

48 1

14553

64

8 128 128 128 128 96 2 128

16 256 256 256 256 192 - -

MAE-EAST

(39464)

4

172418

128

191757

128

172418

128

191757

128

39464

192 1

39464

256

8 256 256 256 256 384 2 512

16 512 512 512 512 768 - -

PORT80

(112310)

4

225050

128

299899

256

225050

128

299899

256

112310

384 1

112310

512

8 256 512 256 512 768 2 1024

16 512 1024 512 1024 1536 - -

Grouptlcom

(170601)

4

314986

256

411122

256

314986

256

411122

256

170601

768 1

170601

1024

8 512 512 512 512 1536 2 2048

16 1024 1024 1024 1024 3072 - -

Telstra

(227223)

4

452732

256

576370

512

452732

256

576370

512

227223

768 1

227223

1024

8 512 1024 512 1024 1536 2 2048

16 1024 2048 1024 2048 3072 - -

Table 1 Comparison of On-Chip Memory Requirement for Bloom Filters

(N = number of prefixes, T = number of elements programmed to the Bloom filter, Mb = memory requirement of

the Bloom filter)

on trie levels (LBSL) [14], respectively. The Chaining-PC and

the Chaining-LP are the algorithms proposed in [15], which

perform linear querying to the Bloom filter programmed for

nodes in a BMP pre-computed (PC) trie and a leaf-pushing

(LP) trie, respectively. In this table, N is the number of

prefixes, T is the number of elements programmed to the

Bloom filter, and Mb is the memory size in Kilobytes (KB) for

the size of a Bloom filter m = αT’, where T’ = 
⌈ log⌉ and

α = 4, 8, and 16 in basic structure and α = 1 and 2 in refined

structure.

While every node in a trie is programmed to the Bloom

filter for other algorithms, prefixes only are programmed in

our proposed algorithms. Since each location of the Bloom

filter is a vector storing an output port, the memory

requirement for a Bloom filter is greater in our proposed

algorithm. Since the port conflict rate and the wrong port

rate are both 0% for 2T’ in our refined algorithm, the

simulation from 4T’ is not performed. In our proposed

algorithms, the maximum memory requirement is 3MB, and

hence the Bloom filter can be accommodated in an on-chip

전기학회논문지 65권 12호 2016년 12월

2066

Routing Data

(N)

WBSL-BF LBSL-BF Chaining-PC Chaining-LP Prop-Basic Prop-Ref

Nh Mh(kB) Nh Mh(kB) Nh Mh(kB) Nh Mh(kB) Nh Mh(kB) Nh Mh(kB)

MAE-WEST

(14553)
76708 449.46 82156 481.38 62763 367.75 62685 367.29 14553 85.27 14553 85.27

MAE-EAST

(39464)
172418 1010.26 191757 1123.58 134766 789.64 134139 785.97 39464 231.23 39464 231.23

PORT80

(112310)
225050 1318.65 299899 1757.22 179069 1049.23 154767 906.84 112310 658.07 112310 658.07

Grouptlcom

(170601)
314986 1845.62 411122 2408.92 246544 1444.59 208168 1219.73 170601 999.62 170601 999.62

Telstra

(227223)
452732 2652.73 576370 3377.17 329929 1933.18 290768 1703.72 227223 1331.38 227223 1331.38

Table 2 Comparison of Off-Chip Memory Requirements for Hash Tables

(N = number of prefixes, Nh = number of hash table entries, Mh = memory requirement of the hash table)

Routing

Data(N)
α

WBSL-BF LBSL-BF Chaining-PC Chaining-LP Prop-Basic
α

Prop-Ref

Ab Wb Ab Wb Ab Wb Ab Wb Ab Wb Ab Wb

MAE-WEST

(14553)

4

4.36 5 4.89 5

15.91

22

14.94

22

7.42

22

1 8.16

228 15.87 14.89 8.16 2 8.16

16 15.87 14.89 8.16 - -

MAE-EAST

(39464)

4

4.33 5 4.75 5

16.24

22

13.28

22

7.72

22

1 7.88

228 16.17 13.20 7.88 2 7.88

16 16.17 13.20 7.88 - -

PORT80

(112310)

4

4.72 5 4.71 5

15.26

25

15.39

25

10.71

25

1 11.96

258 15.16 15.35 11.95 2 11.96

16 15.15 15.34 11.96 - -

Grouptlcom

(170601)

4

4.67 5 4.57 5

15.36

20

15.59

20

6.61

20

1 6.77

208 15.32 15.50 6.77 2 6.77

16 15.31 15.49 6.77 - -

Telstra

(227223)

4

4.78 5 4.77 5

17.58

25

17.65

25

8.47

25

1 9.43

258 17.48 17.61 9.43 2 9.43

16 17.47 17.61 9.43 - -

Table 3 Comparison of the number of On-Chip Bloom Filter Querying

(N = number of prefixes, Ab = average number of Bloom filter accesses, Wb = worst-case number of Bloom filter

accesses)

memory.

Table 2 shows the off-chip memory requirement for a

hash table, where Nh is the number of hash table entries

and Mh is the memory requirement of the hash table in

Kilobytes (KB). The memory requirements for hash tables in

our proposed algorithms are estimated as 6N bytes, where N

is the number of prefixes in a routing table. Our proposed

algorithms require the smallest off-chip memories because

prefixes only are stored in the hash tables.

Table 3 shows the average number and the worst-case

number of Bloom filter accesses stored in the on-chip

memory. The Ab and Wb are the average number and the

worst-case number of Bloom filter accesses, respectively. The

BSL algorithms provide search performance of O(logW), where

the length of IP address W is 32 for IPv4. BF-chaining and

our proposed algorithms are based on linear search on the

length, and hence the search performance is O(W). However,

our algorithms have better performance than the BF-chaining,

because our approach proceeds from the longest to the

shortest length, while the BF-chaining proceeds from the

shortest to the longest length. In case of 16T’ in the basic

algorithm and 1T’ in the refined algorithm, an IP lookup is

Trans. KIEE. Vol. 65, No. 12, DEC, 2016

벡터 블룸 필터를 사용한 IP 주소 검색 알고리즘 2067

performed only through the VBF queries of 6.77 to 11.96 in

average. The Wb of our algorithms is less than 32 because the

Bloom filter is queried for valid lengths which include at least

one prefixes.

The IP address lookup performance mainly depends on the

number of off-chip table accesses. Table 4 shows the average

number and the worst-case number of hash table accesses

stored in the off-chip memory. The Ah and Wh are the

average number and the worst-case number of hash table

accesses, respectively. All previous algorithms should access

the hash table at least once to obtain a matching output port.

However, in our proposed algorithm, the hash table is

accessed only when port conflicts occur. Hence, the average

number becomes 0 as the Bloom filter size increases. It is

shown that the proposed refined structure does not require

off-chip hash table accesses at all.

5. Conclusion

In this paper, we proposed a new IP address lookup

algorithm using a vectored Bloom filter. The vectored Bloom

filter can answer membership queries with output ports. The

proposed approach improves the address lookup performance

by decreasing the number of off-chip memory accesses since

the off-chip hash table is accessed only when port conflicts

occur. The simulation result showed that the port conflict rate

and the wrong port rate both converge to 0% as the size of

the vectored Bloom filter increases. Hence, the proposed

algorithm can provide the IP address lookup without an off-

chip hash table access.

감사의 글

본 연구는 한국연구재단(NRF)의 중견연구자지원사업 도

약과제-미래유망(2014R1A2A1A11051762), 도약과제-성과확

산(2015R1A2A1A15054081)과 정보통신산업진흥원의 대학

IT연구센터 지원 사업(IITP-2016-H8501-16-1007)의 연구

비 지원으로 수행한 연구로써, 관계부처에 감사드립니다.

References

[1] H. J. Chao, “Next Generation Routers,” Proc. IEEE, Vol. 90,

No. 9, pp. 1518-1588, Sep. 2002.

[2] S. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless

Inter-Domain Routing(CIDR): An Address Assignment

and Aggregation Strategy,” RFC 1519, Sep.1993.

[3] M. A. Ruiz-Sanchez, E. M. Biersack and W. Dabbous,

“Survey and Taxonomy of IP Lookup Algorithms”, IEEE

Networks, Vol. 15, No. 2, pp. 8-23, Mar./Apr. 2001.

[4] H. Lim and N. Lee, “Survey and Proposal on Binary

Search Algorithms for Longest Prefix Match,” IEEE

Communications Surverys and Tutorials, Vol. 14, No. 3,

pp. 681-697, Third Quarters, 2012.

[5] T. Yand, G. Xie, Y. Li, Q. Fu, A. Liu, Q. Li, and L. Mathy,

“Guarantee IP Lookup Performance with FIB Explosion,”

ACM Sigcomm, pp. 39-50, 2014.

[6] P. Gupta, S. Lin, and N. Mckeown, “Routing Lookups in

Hardware at Memory Access Speed.” IEEE INFOCOM,

pp.1240-1247, 1998.

[7] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor,

“Longest Prefix Matching Using Bloom Filters,” IEEE/

ACM Trans. Networking, Vol. 14, No. 2, pp. 397-409,

Feb. 2006.

[8] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu,

and Q. Dong, “NameFilter: Achieving Fast Name Lookup

with Low Memory Cost via Applying Two-Stage Bloom

Filters,” in Proceedings of the IEEE INFOCOM’13, pp.

93-99, 2013.

[9] H. Lim, K. Lim, N. Lee, and K. Park, “On Adding Bloom

Filters to Longest Prefix Matching Algorithms,” IEEE

Trans. Computers, Vol. 63, No. 2, pp. 411-423, Feb. 2014.

[10] P. Panda, N. Dutt, and A. Nicolau, “On-Chip vs.

Off-Chip Memory: The Data Partitioning Problem in

Embedded Processor-Based Systems,” ACM Transactions

on Design Automation of Electronics Systems, Vol. 5, No.

3, pp. 682-704, July 2000.

[11] B. H. Bloom, “Space/Time Trade-offs in Hash Coding

with Allowable Errors,” Communications of the ACM, Vol.

13, No. 7, pp. 422-426, 1970.

[12] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz,

“Theory and Practice of Bloom Filters for Distributed

Systems,” IEEE Communications Surveys and Tutorials,

Vol. 14, No. 1, pp. 131-155, First Quarter, 2012.

[13] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner,

“Scalable High Speed IP Routing Lookups,” Proc. ACM

SIGCOMM, pp. 25-35, 1997.

[14] J. Mun, H. Lim and C. Yim, “Binary Search on Prefix

Lengths for IP Address Lookup,” IEEE Communications

Letters, Vol. 10, No. 6, pp. 492-494, June 2006.

[15] J. Mun, and H. Lim, “New Approach for Efficient IP

Address Lookup Using a Bloom Filter in Trie-Based

Algorithms," IEEE Trans. on Computers, Vol. 65, No.

5, pp. 1558-1565, May 2016.

전기학회논문지 65권 12호 2016년 12월

2068

저 자 소 개

변 하 영 (Hayoung Byun)

2014년 2월 이화여자대학교 전자공학과 졸

업(학사). 2014년 3월~현재 이화여자대학교

전자전기공학과(석박사통합과정). 관심분야는

라우터나 스위치 등의 네트워크 관련 알고

리즘 및 구조 설계, 콘텐츠 중심 네트워크

(CCN).

임 혜 숙 (Hyesook Lim)

1986년 서울대학교 제어계측공학과 졸업(학

사). 1986년 8월~1989년 2월 삼성휴렛 팩커

드 연구원. 1991년 서울대학교 제어계측공학

과 졸업(석사). 1996년 The University of

Texas at Austin, Electrical and Computer

Engineering 졸업(박사). 1996년 11월~2000

년 7월 Lucent Technologies-Bell Labs, Member of Technical

Staff. 2000년 7월~2002년 2월 Cisco Systems, Hardware

Engineer. 2002년 3월~이화여자대학교 공과대학 전자전기공학

과 정교수. 관심분야는 라우터나 스위치 등의 네트워크장비 설

계 관련 알고리즘 및 하드웨어 구조 설계, 콘텐츠 중심 네트워

크(CCN), 소프트웨어 정의 네트워크(SDN).

