ISSN 1975-8359(Print) / ISSN 2287-4364(Online)

The Transactions of the Korean Institute of Electrical Engineers Vol. 65, No. 12, pp. 2061 ~2068, 2016

http://dx.doi.org/10.5370/KIEE.2016.65.12.2061

HE 2% UHE AR IP Fa A4 LalElE

[P Address Lookup Algorithm Using a Vectored Bloom Filter

H oot g

(Hayoung Byun -

O

Hyesook Lim)

Abstract - A Bloom filter is a space-efficient data structure popularly applied in many network algorithms. This paper
proposes a vectored Bloom filter to provide a high-speed Internet protocol (IP) address lookup. While each hash index for a
Bloom filter indicates one bit, which is used to identify the membership of the input, each index of the proposed vectored
Bloom filter indicates a vector which is used to represent the membership and the output port for the input. Hence the
proposed Bloom filter can complete the IP address lookup without accessing an off-chip hash table for most cases. Simulation
results show that with a reasonable sized Bloom filter that can be stored using an on-chip memory, an IP address lookup can
be performed with less than 0.0003 off-chip accesses on average in our proposed architecture.

Key Words :

1. Introduction

An IP address consists of a network part (called a prefix)
and a host part. The network part identifies a group of
hosts included in a network and the host part identifies a
specific host [1]. Under a class-based addressing scheme,
the length of the network part was fixed as 8, 16, or 24
bits. An exact matching operation was performed for an IP
address lookup to forward each packet toward a final
destination at Internet routers. However, excessive prefix
waste was caused by the inflexibility in network sizes under
the class-based addressing scheme. A new addressing
scheme called classless inter-domain routing (CIDR) is
currently being used. The CIDR allows variable-length
prefixes, and the Internet routers use the longest prefix of
all matching prefixes as the best matching prefix (BMP) to
forward each input packet to the most specific network
[2-5].

Today, as the speed of Internet traffic continues to increase
exponentially, users utilize a variety of network applications
demanding real-time services. Hence, the IP address lookup
has become one of the most challenging functionalities that
need to be performed at wire-speed. Various IP address lookup

¥ Corresponding Author : Dept. of Electronic and Electrical
Engineering, Ewha Womans University, Korea.
E-mail: hlim@ewha.ac.kr
+# Dept. of Electronic and Electrical Engineering, Ewha Womans
University, Korea.
Received : February 11, 2016; Accepted : November 7, 2016

Bloom filter, IP address lookup, Vectored bloom filter

algorithms have been studied such as trie-based [4-5],
hashing-based [6], and Bloom filter-based algorithms [7-9].
Because of their sizes, the trie and the hash table are usually
stored using off-chip memories, and IP address lookup
procedures are completed through off-chip memory accesses.
However, an access to an off-chip memory is 10 to 20 times
slower than access to an on-chip memory [10]. An on-chip
Bloom filter has been used to reduce the number of off-chip
memory accesses [7-9].

In this paper, we propose a new Bloom filter-based IP
address lookup algorithm using a vectored Bloom filter (VBF).

The remainder of this paper is organized as follows. Section
2 describes related works and Section 3 introduces our
proposed [P address lookup algorithm. Section 4 evaluates and
compares the performance of our proposed algorithm with
previous BF-based algorithms and Section 5 concludes the
paper.

2. Related Works

2.1 Bloom Filter

A Bloom filter [11] is a bit-vector-based data structure
used to represent a data set and to answer membership
queries. Bloom filters have been popularly used in many
network algorithms because of their space efficiency [12]. A
Bloom filter involves two operations: programming and
querying.

Copyright © The Korean Institute of Electrical Engineers 2061
This is an Open—Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by—-nc/3.0/)which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

HM7|etel=2X| 657 125 20164 12¢

A Bloom filter is an array of m bits, which are initially set
to 0. In programming, every element in a set S = {x; xz, -+
X} is programmed to the Bloom filter using 4 independent
hash functions, each of which is used to map an element to a
random number with a range {1, ---, m}. To insert an element,
the k& bits corresponding to the & hash indices are set to 1.
For n given elements, the optimal number of hash functions is
k = (m/n) In2.

Using the same k& hash functions as those used in the
programming, querying is performed to check whether an
input is the member of the set. In querying an input, if any
of the k bits are 0, the input is definitely not a member of
set S and it is defined as a negative. If all the k bits are 1,
the input is identified as a member of set S and it is
defined as a positive.

A Bloom filter can produce false positives due to hash
collision; an input y &S can have 4k hash indices
corresponding to & bits set to 1. False positives can be
improved by increasing the size of the Bloom filter, but
cannot be completely eliminated. However, the negative
results of the Bloom filter are always true.

2.2 Bloom Filter-Based IP Address Lookup Algorithms

Dharmapurikar et al. proposed an IP address lookup
algorithm by employing Bloom filters [7]. Their structure
consists of ¥ Bloom filters which are queried in parallel, where
W is the number of different prefix lengths. For the lengths
with positive results, an off-chip hash table is probed and
returns the output port corresponding to the longest matching
prefix.

Lim et al. proposed to add a Bloom filter to trie-based
algorithms [9]. In performing a binary search on trie
levels [13-14], an on-chip Bloom filter is used to reduce
the number of hash table accesses by producing negative
results for non-existing nodes.

In the Bloom filter chaining approach proposed by Mun et
al. [15], an on-chip Bloom filter is programmed for each node
in a trie and is sequentially queried as increasing the trie level.
For a specific length of a given input, if a negative result is
produced, it means that no node appears at the current level
and at longer levels for the path of the input. Hence, an
off-chip hash table is accessed for the last positive level. False
positives of the Bloom filter can cause back-tracking to a
shorter level.

3. Proposed Algorithm

The proposed vectored Bloom filter (VBF) is an m multi-bit

2062

1
Output port 0|0 1|0
({ bitS) H H : : .
0|1 10
1 (m-2) (m-1)

Bloom filter size (m)

Fig. 1 Vectored Bloom filter structure

array, which contains an output port in each vector. Our
proposed structure completes the I[P address lookups by
querying only the VBF without accessing the off-chip hash
table. The hash table is constructed using an off-chip
memory for the case where an output port is not determined
through the VBF. Fig. 1 shows the vectored Bloom filter
structure.

3.1 Basic Vectored Bloom Filter Algorithm

As shown in Fig. 1, each hash index for the VBF points
to / bits which represent an output port. In our proposed
approach, if all of the / bits for any single vector are 0, it
is defined as a negative, and it means that the vector is
not programed by any prefix. If all of the / bits for a
single vector are 1, it is defined as a conflict, and it
means that the vector is programed by two or more
different prefixes. Hence, an /-bit vector can represent
up to 2’-2 output ports.

In the construction procedure, every prefix in a routing
table is programmed into the VBF and is stored in the hash
table. Algorithm 1 describes the details in programming the
basic VBF. For a prefix x which has output port x.port, k
hash indices are obtained. The k vectors corresponding to the
hash indices are written by xport If any of the vectors
already have an output port other than x.porf, the vector is
written by all 1s to represent the conflict. This procedure is
repeated for every prefix included in the routing table.

Algorithm 2 describes the details in querying the basic

Algorithm 1 Basic VBF Programming Procedure

Function programVBF(x)
for i =1 — k)
if (BF[h(x)] == NULL) then
BF[h{(x)] « x.port;
else if (BF[h(x)] = x.port) then
for j =0 — [-1)
BF[h(x)][j]]1 < 1; // conflict
end for
end if
end for
end Function

Trans. KIEE. Vol. 65, No. 12, DEC, 2016

Algorithm 2 Basic VBF Querying Procedure ‘

‘ Algorithm 3 VBF Search Procedure

Function queryVBF(y)
check — BFTho(y)] & BFTh:(»)] & ... & BF[h.i(y)];
counter «— 0;
if (all bits in check is 0) then
return 0; //negative
else if (all bits in check is 1) then
return -1; //conflict
else
for i =1 — k)
if (check == BF[h{(y)]) then
counter «— counter + 1;
else if (all bits in BF[A(y)] is 1) then
counter «— counter + 1;

end if
end for
if (counter < k) then
return 0; // negative
else

outPort < convert decimal(check);
return outPort; // positive
end if
end if
end Function

IP address
o1 1] o0 Matching
Vectored BF | 0 | 0 1{o output port Next ho
(on-chip) : ! P
0|1 1]0
Conflict
Prefix | Output port
Hash table
(off-chip)

Fig. 2 The search procedure of proposed algorithms

VBF. We use ‘AND’ operation in this algorithm. For example,
suppose we use three 4-bit vectors; & = 3 and / = 4. If the
result of ‘AND’ operation with 3 vectors is 0000, it indicates a
negative result. If the result is 1111, it indicates a conflict
result. If the result is neither 0000 nor 1111, we should check
whether it is a positive result. For example, if the three 4-bit
vectors are 1111, 0001, and 0011, it is clearly a negative result
because two different output ports are programmed to the
vectors. We implemented this function as follows. Since the
result of AND operation of these three vectors is 0001, we
count the number of 0001 and 1111. If the counting result is
less than 4, which is 2 in this example, it is a negative. If it
is the same as 4, it returns the output port.

The search procedure for the proposed IP address lookup
algorithm is shown in Fig. 2 and Algorithm 3. For a given

Function Search(DstAddr)
for (length = longestLen — shortestLen)

if (queryVBF(DstAddr.length) == -1) then
/I conflict
BMPport «— searchHT(DstAddr.length);,
if (BMPport '= NULL) then

break; // no more Bloom filter access

end if

else if (queryVBF(DstAddr.length) == 0) then
continue; // negative

else /I positive
BMPport «— queryVBF(DstAddr.length);
break;
end if
end for

return BMPport;
end Function

input address, starting from the longest length of prefixes,
the VBF is queried and k vectors are obtained. If the VBF
querying returns the conflict, whether the given input has a
matching prefix in the current length is not determined.
Hence the off-chip hash table should be accessed. If the
hash table returns an output port for the current length,
the search procedure is finished. Otherwise, the search
procedure continues to a shorter length.

3.2 Refined Vectored Bloom Filter Algorithm

A drawback of the basic VBF algorithm described in 3.1
is that a vector becomes useless when being programmed
with the conflict. The proposed algorithm is refined to
utilize the information included in the conflict vectors. In
the refined structure, one bit is allocated for each output
port. For each of the & vectors obtained for a prefix, the
bit location of the output port corresponding to this prefix
is set. The structure of this refined algorithm is the same
as Fig. 1, an /-bit vector can represent / different output
ports in the refined structure, while it can represent 2/-2
output ports in the basic structure.

Algorithm 4 describes programming procedure of the
refined VBF. In programming a prefix, each bit of the &
vectors, which corresponds to the output port of the prefix,
is changed to 1. Hence, even though different ports have
already been programmed in a vector, the vector is not
required to indicate the conflict. Note that each row of the

Algorithm 4 Refined VBF Programming Procedure
Function programVBF(x)
for i =1 — k)
BF[h(x)][x.port-1] « 1;
end for
end Function

2063

HM7|etel=2X| 657 125 20164 12¢

Algorithm 5 Refined VBF Querying Procedure

Function queryVBF(y)
check «— BFTho(y)] & BF[h,(»)] & ... & BF[h./(v)];
counter «— 0;
for i = 0 — [-1)
if (check[i] == true) then
outPort «— i + 1;
counter «— counter + 1;
if (counter > 1) then
break;
end if
end if
end for
if (counter == 0) then
return 0; // negative
else if (counter > 1) then
return -1; //conflict

else if (counter == 1) the
return outPort; // positive
end if

end Function

refined VBF represents the membership of the prefixes
having the same output port. Assuming that prefixes are
evenly distributed to each output port, each row of the
refined VBF is programmed by n// prefixes.

Algorithm 5 describes the querying procedure of the
refined VBF. If none of the vectors obtained for a specific
length of the input have a common bit set to 1, it is a
negative result. If all vectors have two or more common
bits set, it is the conflict case. If a specific bit location of
all vectors is set, it is the output port of the matching
prefix. We also use ‘AND’ operation to implement this. Since
the set positions in the result of ‘AND’ operation denote
programmed ports, we count the number of 1s in the result.
For example, suppose we use three 4-bit vectors; & = 3
and / = 4. If the result of ‘AND’ operation is 0000, it
indicates a negative result. If the result of ‘AND’ operation
has a single bit set, it indicates a positive result, in which
the set position indicates the output port. The conflict is
indicated when the number of 1s in the result of ‘AND’
operation is more than 1.

The search procedure for the refined algorithm is the
same as the basic algorithm shown in Algorithm 3.

4. Performance Evaluation

Performance evaluation was carried out with C language
using routing tables downloaded from five backbone routers.
The hash function used for our simulation is a 64-bit cyclic
redundancy check (CRC) generator. Multiple hash indices
with variable lengths are obtained by combining a variable

2064

M AT W8T m16T

<
& 103
s H 10.1 ¥
s 9 5.4
3 a4 H 1
HIECE [
- : 1 = 1.1
x 1.0
2 1
05 0.3
0.2
027 [l g 0 019 .,003 018
o s sl - e
A A O o C
A ¢ & & &
¥ L & ®
&S ¢

Fig. 8 Port conflict rate according to Bloom filter sizes
(Proposed Basic Structure)

number of bits of the CRC code. Assuming that the number
of output ports is 32, 6 bits and 32 bits are allocated for
each vector of the Bloom filter in the basic structure and
the refined structure, respectively.

The port conflict rate is defined as the ratio of inputs, in
which the output port is not identified by the Bloom filter
querying because of vector conflict. Hence it indicates the
ratio of inputs that should access the off-chip hash table.
The wrong port rate is defined as the ratio of inputs, in
which the Bloom filter provides a wrong result because of a
false positive. For the number of elements 7 programmed to a

Bloom filter, the size of a Bloom filter m = a7, where 7 =

oMe="l and @ = 4, 8, and 16. The optimal number of hash

functions is & = (m/T’) In2 in the basic structure, while the
optimal number of hash functions is &= (m/R’) In2 in refined
structure, where R is the number of prefixes belong to a
single port, and R = 2""°%"! I we assume that prefixes are
evenly distributed to each output port, R= 7/1

Fig. 3 shows the port conflict rate according to Bloom
filter sizes. Since the refined structure did not cause any
port conflict, we do not show the port conflict rate for the
refined structure in Fig. 3. Note that the port conflict rate
is close to 0% for 167"

Fig. 4 shows the wrong port rate for the basic structure
where a=4, 8, and 16, and for the refined structure where
a=1 and 2. Note that the wrong port rate converges to 0%
for 167" in the basic structure and for 27" in the refined
structure.

Table 1 compares on-chip memory requirements for Bloom
filters. The WBSL-BF and LBSL-BF are algorithms proposed
in [9], in which a Bloom filter is added to Waldvogel's binary
search on trie levels (WBSL) [13] and to Lim's binary search

MAT" ST W16T

001.; 18.6
016 14.4 | I
0.14
0.12

0.1
0.08
0.06
0.04
0.02

14.9

119 =
| 0.108
0.098 = =

Wrong port rate(%)

0.004
0 0 0 0 0

A A o
O S
& é\é@ L

(a) Proposed basic structure

Fig. 4 Wrong port rate according to Bloom filter sizes

Trans. KIEE. Vol. 65, No. 12, DEC, 2016

MT m2T

0.0007

0.0006
0.0006

0.0005

0.0004
0.0004

Wrong port rate{%)

0.0003
0.0002

0.0001

(b) Proposed refined structure

Table 1 Comparison of On-Chip Memory Requirement for Bloom Filters

(N = number of prefixes, 7 = number of elements programmed to the Bloom filter, M, = memory requirement of

the Bloom filter)

WBSL-BF LBSL-BF Chaining-PC Chaining-LP Prop-Basic Prop-Ref
Routing Data(N)| a a

ApwesT A 64 64 64 64 48 | 1 64
(55 8 | 76708 | 128 | 82156 | 128 | 76708 | 128 | 82156 | 128 | 14553 | 96 | 2 | 14553 | 128
16 256 956 956 956 192 | - -
4 128 128 128 128 192 | 1 256

MAE-EAST
o460 8 | 172418 | 256 | 191757 | 256 | 172418 | 256 | 191757 | 256 | 39464 | 384 | 2 | 39464 | 512
16 512 512 512 512 768 | - -
vortss 2 128 256 128 256 384 | 1 512
(ios10) |8 | 725050 | 256 | 290809 | 512 | 225050 | 256 | 299899 | 512 | 112310 | 768 | 2 | 112310 | 1024
16 512 1024 512 1024 1536 | - -
256 256 256 956 68 | 1 1024

Grouptlcom
110601 314986 | 512 | 411122 | 512 | 314986 | 512 | 411122 | 512 | 170601 | 1536 | 2 | 170601 | 2048
16 1024 1024 1024 1024 072 | - -
et 256 512 256 512 68 | 1 1024
(2;’732;; 4527132 | 512 | 576370 | 1024 | 452732 | 512 | 576370 | 1024 | 227223 | 1536 | 2 | 227223 | 2048
16 1024 2048 1024 2048 072 | - -

on trie levels (LBSL) [14], respectively. The Chaining-PC and
the Chaining-LP are the algorithms proposed in [15], which
perform linear querying to the Bloom filter programmed for
nodes in a BMP pre-computed (PC) trie and a leaf-pushing
(LP) trie, respectively. In this table, N is the number of
7 is the number of elements programmed to the

Bloom filter, and M, is the memory size in Kilobytes (KB) for
log,7'1

prefixes,
the size of a Bloom filter m = a7, where 7" = 2! and
a = 4, 8, and 16 in basic structure and a = 1 and 2 in refined
structure.

While every node in a trie is programmed to the Bloom
filter for other algorithms, prefixes only are programmed in
our proposed algorithms. Since each location of the Bloom
filter
requirement for a Bloom filter is greater in our proposed
algorithm. Since the port conflict rate and the wrong port
rate are both 0% for 27" in our refined algorithm, the

is a vector storing an output port, the memory

simulation from 47 is not performed. In our proposed
algorithms, the maximum memory requirement is 3MB, and
hence the Bloom filter can be accommodated in an on-chip

2065

HM7|etel=2X| 657 125 20164 12¢

Table 2 Comparison of Off-Chip Memory Requirements for Hash Tables
(N = number of prefixes, N, =

number of hash table entries, M), =

memory requirement of the hash table)

Routing Data WBSL-BF LBSL-BF Chaining-PC Chaining-LP Prop-Basic Prop-Ref
) Ny My(kB) Ny My(kB) Ny My(kB) Ny M,(kB) Ny M,(kB) Ny M,(kB)

Ml?i_;g;ST 76708 | 44946 | 82156 | 481.38 | 62763 | 367.75 | 62685 | 367.29 | 14553 | 85.27 14553 | 85.27
M?SI;;EIZ)ST 172418 | 1010.26 | 191757 | 1123.58 | 134766 | 789.64 | 134139 | 78597 | 39464 | 231.23 | 39464 | 231.23

PORT80

(112310) 225050 | 1318.65 | 299899 | 1757.22 | 179069 | 1049.23 | 154767 | 906.84 | 112310 | 658.07 | 112310 | 658.07
Gzi;lgég:f)m 314986 | 1845.62 | 411122 | 240892 | 246544 | 1444.59 | 208168 | 1219.73 | 170601 | 999.62 | 170601 | 999.62

(gze;sztzrg) 452732 | 2652.73 | 576370 | 3377.17 | 329929 | 1933.18 | 290768 | 1703.72 | 227223 | 1331.38 | 227223 | 1331.38

Table 3 Comparison of the number of On-Chip Bloom Filter Querying

(N = number of prefixes, A, = average number of Bloom filter accesses, I, = worst-case number of Bloom filter
accesses)
Routing WBSL-BF LBSL-BF Chaining-PC Chaining-LP Prop-Basic Prop-Ref
a a
Data(V) Ap W Ap Wy Ap W Ap Wy Ap W Ap W
15.91 14.94 7.42 1 8.16
MAE-WEST
4.36 5 4.89 5 15.87 22 14.89 22 8.16 22 2 8.16 22
(14553)
16 15.87 14.89 8.16 - -
MAE-FAST 16.24 13.28 7.72 1 7.88
4.33 5 4.75 5 16.17 22 13.20 22 7.88 22 2 7.88 22
(39464)
16 16.17 13.20 7.88 - -
15.26 15.39 10.71 1 11.96
PORT80
4.72 5 471 5 15.16 25 15.35 25 11.95 25 2 11.96 25
(112310)
16 15.15 15.34 11.96 - -
4 15.36 15.59 6.61 1 6.77
Grouptleom =07) o7 5 457 5 [1532 | 20 [1550 | 20 |61 | 20 |2]| 677 | 20
(170601) ’ ' . : : .
16 15.31 15.49 6.77 - -
17.58 17.65 847 1 943
Telstra
478 5 477 5 1748 25 17.61 25 9.43 25 2 9.43 25
(227223)
16 1747 17.61 9.43 - -

memory.

Table 2 shows the off-chip memory requirement for a
hash table, where N, is the number of hash table entries
and M, is the memory requirement of the hash table in
Kilobytes (KB). The memory requirements for hash tables in
our proposed algorithms are estimated as 6V bytes, where NV
is the number of prefixes in a routing table. Our proposed
algorithms require the smallest off-chip memories because
prefixes only are stored in the hash tables.

Table 3 shows the average number and the worst-case

number of Bloom filter accesses stored in the on-chip

2066

memory. The A, and W, are the average number and the
worst-case number of Bloom filter accesses, respectively. The
BSL algorithms provide search performance of O(/ogW), where
the length of IP address W is 32 for IPv4. BF-chaining and
our proposed algorithms are based on linear search on the
length, and hence the search performance is O(W). However,
our algorithms have better performance than the BF-chaining,
because our approach proceeds from the longest to the
shortest length, while the BF-chaining proceeds from the
shortest to the longest length. In case of 167" in the basic
algorithm and 17" in the refined algorithm, an IP lookup is

performed only through the VBF queries of 6.77 to 11.96 in
average. The W, of our algorithms is less than 32 because the
Bloom filter is queried for valid lengths which include at least
one prefixes.

The [P address lookup performance mainly depends on the
number of off-chip table accesses. Table 4 shows the average
number and the worst-case number of hash table accesses
stored in the off-chip memory. The A, and W, are the
average number and the worst-case number of hash table
accesses, respectively. All previous algorithms should access
the hash table at least once to obtain a matching output port.
However, in our proposed algorithm, the hash table is
accessed only when port conflicts occur. Hence, the average
number becomes 0 as the Bloom filter size increases. It is
shown that the proposed refined structure does not require
off-chip hash table accesses at all.

5. Conclusion

In this paper, we proposed a new I[P address lookup
algorithm using a vectored Bloom filter. The vectored Bloom
filter can answer membership queries with output ports. The
proposed approach improves the address lookup performance
by decreasing the number of off-chip memory accesses since
the off-chip hash table is accessed only when port conflicts
occur. The simulation result showed that the port conflict rate
and the wrong port rate both converge to 0% as the size of
the vectored Bloom filter increases. Hence, the proposed
algorithm can provide the IP address lookup without an off-
chip hash table access.

ZALe 2
2 dFe SHEOEAE(NRR)S] SHATRREAY &
O] - 12} E(2014R1A2A1A11051762), = OFIbA] - 12t
AH2015R1A2A1A15054081) 1 BHSALIAR S Thst
ITHAE RY ARIITP-2016-H8501-16-1007)2Q] A1+
Hl AQOZ $=aligh 62x], WA LAIEHUTE

References

[1] H. J. Chao, “Next Generation Routers,” Proc. IEEE, Vol. 90,
No. 9, pp. 1518-1588, Sep. 2002.

[2] S. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless
Inter-Domain Routing(CIDR): An Address Assignment

Trans. KIEE. Vol. 65, No. 12, DEC, 2016

and Aggregation Strategy,” RFC 1519, Sep.1993.

[3] M. A. Ruiz-Sanchez, E. M. Biersack and W. Dabbous,
“Survey and Taxonomy of IP Lookup Algorithms”, /EEE
Networks, Vol. 15, No. 2, pp. 8-23, Mar./Apr. 2001.

[4] H. Lim and N. Lee, “Survey and Proposal on Binary
Search Algorithms for Longest Prefix Match,” /EEE
Communications Surverys and Tutorials, Vol. 14, No. 3,
pp. 681-697, Third Quarters, 2012.

[5] T. Yand, G. Xie, Y. Li, Q. Fu, A. Liu, Q. Li, and L. Mathy,
“Guarantee IP Lookup Performance with FIB Explosion,”
ACM Sigcomm, pp. 39-50, 2014.

[6] P. Gupta, S. Lin, and N. Mckeown, “Routing Lookups in
Hardware at Memory Access Speed.” [EEE INFOCOM,
pp.1240-1247, 1998.

[7] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor,
“Longest Prefix Matching Using Bloom Filters,” EEE/
ACM Trans. Networking, Vol. 14, No. 2, pp. 397-409,
Feb. 2006.

[8] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu,
and Q. Dong, “NameFilter: Achieving Fast Name Lookup
with Low Memory Cost via Applying Two-Stage Bloom
Filters,” in Proceedings of the IEEE INFOCOM'IS, pp.
93-99, 2013.

[9] H. Lim, K. Lim, N. Lee, and K. Park, “On Adding Bloom
Filters to Longest Prefix Matching Algorithms,” /EEE
Trans. Computers, Vol. 63, No. 2, pp. 411-423, Feb. 2014.

[10] P. Panda, N. Dutt, and A. Nicolau, “On-Chip vs.
Off-Chip Memory: The Data Partitioning Problem in
Embedded Processor-Based Systems,” ACM Transactions
on Design Automation of Electronics Systems, Vol. 5, No.
3, pp. 682-704, July 2000.

[11] B. H. Bloom, “Space/Time Trade-offs in Hash Coding
with Allowable Errors,” Communications of the ACM, Vol.
13, No. 7, pp. 422-426, 1970.

[12] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz,
“Theory and Practice of Bloom Filters for Distributed
Systems,” /EEE Communications Surveys and Tutorials,
Vol. 14, No. 1, pp. 131-155, First Quarter, 2012.

[13] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner,
“Scalable High Speed IP Routing Lookups,” Proc. ACM
SIGCOMM, pp. 25-35, 1997.

[14] J. Mun, H. Lim and C. Yim, “Binary Search on Prefix
Lengths for IP Address Lookup,” /EEE Communications
Letters, Vol. 10, No. 6, pp. 492-494, June 2006.

[15] J. Mun, and H. Lim, “New Approach for Efficient IP
Address Lookup Using a Bloom Filter in Trie-Based
Algorithms," /EEE Trans. on Computers, Vol. 65, No.
5, pp. 15658-1565, May 2016.

2067

HM7|etel=2X| 657 125 20164 12¢

H 5} 9 (Hayoung Byun)
2014 2¢ olstoixttisty MAMEE L &
AEIAD. 2014 3¥~SIR) OlFtodRITISH
RAA 7| ZSTHAHAISETHE). T RO
ZREL AR 89 HEYA #HH g
g 9 7F A, SHx= 54 HEYA

(CCN).

B

@l 3] & (Hyesook Lim)

1986 Algthstu AMoASIE S/ (5
AD. 1986 8€~1989 2¢ AMdwEl A
= g 19919 Aty AoASSs
I E(AAD. 1996 The University of
Texas at Austin, Electrical and Computer
Engineering EYHIAD. 1996 11€~2000
H 792 Lucent Technologies-Bell Labs, Member of Technical
Staff. 20008 7€~2002 2€ Cisco Systems, Hardware
Engineer. 20028 3€~O|StoJAIhetn Zatchst AAME 7SS}
0 A JAEok=s BhREU AQIA] S99 WEIAH 4
A T daels ¥ o= 1 A, SH=E B4 HES
(CCN), £2ZEH 0] FO UELI=(SDN).

2068

