DOI QR코드

DOI QR Code

Recovery of Valuable Metal from e-Wasted Electronic Devices

폐전자부품에서 유가금속 회수기술

  • Kim, Yu-Sang (ReSEAT Program, Korea Institute of Science and Technology Information (KISTI))
  • 김유상 (한국과학기술정보연구원 ReSEAT)
  • Received : 2016.12.19
  • Accepted : 2016.12.30
  • Published : 2016.12.31

Abstract

As expensive and valuable metals being used in electronic and semiconducting industries are abandoned as industrial wastes after use of them, it is required to recover them from e-wasted electronics parts. Gold which is used for printed circuit boards or electronic equipments, accessories, etc., is one of e-Wasted materials and recently indium, gallium, zirconium, cobalt, molybdenum and lithium are bacome valuable metals to be recovered from the e-wastes. Since the amount of precious metals is now being faced with scarcity, lean too much on area and instability of supply, and industrial demands are rapidly increasing every year, it becomes more important to recover the valuable metals from the industrial wastes. In this review, we introduced technologies and research trend of the recovery processes of valuable metals from the e-wastes in high-tech devices over the world.

Keywords

References

  1. J. Cui, E. Forssberg, Mechanical recycling of waste electric and electronic equipment: a review, Journal of Hazardous Materials B99 263 (2003) 243-263. https://doi.org/10.1016/S0304-3894(03)00061-X
  2. BRUCE A. FOWLER AND NIKKI MAPLES-REYNOLDS, Indium, http://dx.doi.org/10.1016/B978-0-444-59453-2.00039-1, Volume II, Academic Press, Handbook on the Toxicology of Metals 4E CHAPTER 39 (2015) 845-853.
  3. L. Sun, K. Qiu, Organic oxalate as leachant and precipitant for recovery of valuable metals from spent lithium-ion batteries, Waste Management 32 (2012) 1575-1582. https://doi.org/10.1016/j.wasman.2012.03.027
  4. T. Wakabayashi, T. Maki, S. Mizutani, H. Hasegawa, H. Sawai, Ismail M.M. Rahman, Yoshinori Tsukagoshi, Selective recovery of indium from lead-smelting dust, Chemical Engineering Journal 277 (2015) 219-228. https://doi.org/10.1016/j.cej.2015.04.112
  5. S. Gupta, G. Modi, R. Saini, V. Agarwala, A review on various electronic waste recycling techniques and hazards due to its improper handling, IRJES 3 (2014) 5-17.
  6. J. Cui, L. Zhang, Metallurgical recovery of metals from electronic waste: A review, Journal of Hazardous Materials 158 (2008) 228-256. https://doi.org/10.1016/j.jhazmat.2008.02.001
  7. Johnson Matthey, PGM Market Report November, KISTI (2015) 2.
  8. A. M. Alfantazi, R. R. Moskalyk, Processing of indium: a review, Minerals Engineering 16 (2003) 687-694. https://doi.org/10.1016/S0892-6875(03)00168-7
  9. J. G. Kim, Investigation on Recycling in Material Flow on Indium Demand Industry, J. Kor. Powd. Met. Inst. 19 (2012) 72-78. https://doi.org/10.4150/KPMI.2012.19.1.072
  10. L. Wang, M. Lee, Recovery of Indium from Secondary Resources by Hydrometallurgical Method, J. of Korean Inst. of Resources Recycling 22 (2013) 3-10.
  11. J. Li, S. Gao, H. Duan, L. Liu, Recovery of valuable materials from waste liquid crystal display panel, Waste Management 29 (2009) 2033-2039. https://doi.org/10.1016/j.wasman.2008.12.013
  12. F. Zhang, C. Wei., Z. Deng, X. Li, C. Li, M. Li, Reductive leaching of indium-bearing zinc residue in sulfuric acid using sphalerite concentrate as reductant, Hydrometallurgy 161 (2016) 102-106. https://doi.org/10.1016/j.hydromet.2016.01.029
  13. X. Li, Z. Deng, C. Li, C. Wei, M. Li, G. Fan, H. Rong, Direct solvent extraction of indium from a zinc residue reductive leach solution by D2EHPA, Hydrometallurgy 156 (2015) 1-5. https://doi.org/10.1016/j.hydromet.2015.05.003
  14. Heesung Metal Ltd, Method Of Manufacturing Gallium Oxide For Oxide Semiconductor By Using Gps And Plasma Recovery Technology, Korean Patent 2015-1546612.
  15. Y.-J. Choi, S.-H. Hwang, D.-I. Jeon and K.-S. Han, Method for Making High Purity Gallium by Electrowinning, J. of Korean Inst. of Resources Recycling 23 (2014) 63-67. https://doi.org/10.7844/kirr.2014.23.6.63
  16. Enco Ltd, A Recovery Method Of Gallium From The Mo-cvd Wastes, Korean Patent 2012-0159401
  17. K. S. Yoon, Development of Material Process; Production Technology of Gallium and Indium for Hightech Material, KIST, 1992.
  18. S. M. Woo, Development of Refining for High purity (>7N) Ga, As Metals, 2004.
  19. D. H. Kwon, Development of Commercial Technology and Recovery of rare-Earth metal from e-Wasted LED, 2013.
  20. D. J. Park, S. H. Kim, K. T. Park, J. H. Mun, H. H. Lee, J. H. Lee, Electrorefining Behavior of Zirconium Scrap with Multiple Cathode in Fluoride-Based Molten Salt, JNFCWT 13 (2015) 11-19.
  21. Poscomtech Ltd, Separation Method Of Zirconium And Hafnium By Solvent Extraction Process, Korpat 2013-13163351.
  22. RIST, Method and Equipment of reduction for $ZrCl_2$ KORPAT 2014-1351323.
  23. I. S. Hwang, Development of Process for Recovery of Zirconium by Electrorefining after using nuclear fuel, Seoul National University, 2014.
  24. M. Redlinger, R. Eggert, M. Woodhouse, Evaluating the availability of gallium, indium, and tellurium from recycled photovoltaic modules, Solar Energy Materials & Solar Cells 138 (2015) 58-71. https://doi.org/10.1016/j.solmat.2015.02.027
  25. S. Nusen, T. Chairuangsri, Z. Zhu, C. Y. Cheng, Recovery of indium and gallium from synthetic leach solution of zinc refinery residues using synergistic solvent extraction with LIX 63 and Versatic 10 acid, Hydrometallurgy 160 (2016) 137-146. https://doi.org/10.1016/j.hydromet.2016.01.007
  26. L. Melk, M.L. Anttic, M. Anglada, Material removal mechanisms by EDM of zirconia reinforced MWCNT nanocomposites, Ceramics International 42 (2016) 5792-5801. https://doi.org/10.1016/j.ceramint.2015.12.120
  27. C. Tunsu, M. Petranikova, C. Ekberg, T. Retegan, A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions, Separation and Purification Technology 161 (2016) 172-186. https://doi.org/10.1016/j.seppur.2016.01.048
  28. X. Li, C. Wei, Z. Deng, C. Li, G. Fan, H. Rong, F. Zhang, Extraction and separation of indium and copper from zinc residue leach liquor by solvent extraction, Separation and Purification Technology 156 (2015) 348-355. https://doi.org/10.1016/j.seppur.2015.10.021
  29. A. V. M. Silveira, M. S. Fuchs, D. K. Pinheiro, E.H. Tanabe, D.A. Bertuol, Recovery of indium from LCD screens of discarded cell phones, Waste Management 45 (2015) 334-342. https://doi.org/10.1016/j.wasman.2015.04.007
  30. D. Fontana, Federica Forte, Roberta De Carolis, Mario Grosso, Materials recovery from waste liquid crystal displays: A focus on indium, Waste Management 45 (2015) 325-333. https://doi.org/10.1016/j.wasman.2015.07.043
  31. L. Rocchetti, A. Amato, F. Beolchini, Recovery of indium from liquid crystal displays, Journal of Cleaner Production 116 (2016) 299-305. https://doi.org/10.1016/j.jclepro.2015.12.080
  32. L. Rocchetti, A. Amato, V. Fonti, Stefano Ubaldini, Ida De Michelis, Bernd Kopacek, Francesco Veglio, Francesca Beolchini, Cross-current leaching of indium from end-of-life LCD panels, Waste Management 42 (2015) 180-187. https://doi.org/10.1016/j.wasman.2015.04.035
  33. H. Wang, Y. Gu, Y. Wu, Y.-N. Zhang, W. Wang, An evaluation of the potential yield of indium recycled from end-of-life LCDs: A case study in China, Waste Management 46 (2015) 480-487. https://doi.org/10.1016/j.wasman.2015.07.047
  34. N. Sakai, M. Takeoka, T. Kumaki, H. Asano, T. Konakahara, Y. Ogiwara, Indium-catalyzed reduction of secondary amides with a hydrosiloxane leading to secondary amines, Tetrahedron Letters 56 (2015) 6448-6451. https://doi.org/10.1016/j.tetlet.2015.09.148
  35. H. Yoshida, S. Izhara, E. Nishio, Y. Utsumi, N. Kakimori, F. S. Asgharia, Recovery of indium from TFT and CF glasses of LCD wastes using NaOH-enhanced sub-critical water, J. of Supercritical Fluids 104 (2015) 40-48. https://doi.org/10.1016/j.supflu.2015.05.016
  36. H. Yoshida, S., E. Nishio, Y. Utsumi, N. Kakimori, S. A. Feridoun, Recovery of indium from TFT and CF glasses in LCD panel wastes using subcritical water, Solar Energy Materials & Solar Cells 125 (2014) 14-19. https://doi.org/10.1016/j.solmat.2014.02.009
  37. Y. He, E. Ma, Z. Xu, Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction, Journal of Hazardous Materials 268 (2014) 185-190. https://doi.org/10.1016/j.jhazmat.2014.01.011
  38. S. Hussain, C. Pezzei, Y. Güuzel, M. Rainer, C. W. Huck, G. K. Bonn, Zirconium silicate assisted removal of residual proteins after organic solvent deproteinization of human plasma, enhancing the stability of the LC-ESI-MS response for the bioanalysis of small molecules, Analytica Chimica Acta, 852 (2014) 284-292. https://doi.org/10.1016/j.aca.2014.09.014
  39. V. Smolenski, A. Novoselova, A. Osipenko, M. Kormilitsyn, Y. Luk'yanova, Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl-KCl molten salt phases, Electrochimica Acta 133 (2014) 354-358. https://doi.org/10.1016/j.electacta.2014.04.042
  40. B. Gupta, P. Malik, Z. B. Irfan, Recovery of uranium, thorium and zirconium from allanite by extraction chromatography using impregnated chromosorb, Water Resources and Industry 4 (2013) 21-31. https://doi.org/10.1016/j.wri.2013.11.002
  41. H. Hasegawa, I. M. M. Rahman, Y. Egawa, H. Sawai, Z. A. Begum, T. Maki, S. Mizutani, Recovery of indium from end-of-life liquid-crystal display panels using aminopolycarboxylate chelants with the aid of mechanochemical treatment, Microchemical Journal 106 (2013) 289-294. https://doi.org/10.1016/j.microc.2012.08.010
  42. C. Jeon, J.-H. Cha, J.-Y. Choi, Adsorption and recovery characteristics of phosphorylated sawdust bead for indium(III) in industrial wastewater, Journal of Industrial and Engineering Chemistry 27 (2015) 201-206. https://doi.org/10.1016/j.jiec.2014.12.036
  43. J. Park, S. Choi, S. Sohn, K.-R. Kim, I. S. Hwang, Effects of operating conditions on molten-salt electrorefining for zirconium recovery from irradiated Zircaloy-4 cladding of pressurizedwater reactor, Nuclear Engineering and Design 275 (2014) 44-52. https://doi.org/10.1016/j.nucengdes.2014.04.035
  44. C.-H. Lee, M.-K. Jeong, M. F. Kilicaslan, J.-H. Lee, H.-S. Hong, S.-J. Hong, Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM, Waste Management 33 (2013) 730-734. https://doi.org/10.1016/j.wasman.2012.10.002
  45. Johnson Matthey, Platinum tones; supply and demand, PGM Market Report November, KISTI (2015).
  46. S. Gupta, G. Modi, R. Saini, V. Agarwala, A review on various electronic waste recycling techniques and hazards due to its improper handling, IRJES, 3 (2014) 5-17.
  47. G. P. Nayaka, J. Manjanna, K. V. Pai, R. Vadavi, S. J. Keny, V. S. Tripathi, Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids, Hydrometallurgy 151 (2015) 73-77. https://doi.org/10.1016/j.hydromet.2014.11.006
  48. Y. Yang, G. Huang, S. Xu, Y. He, X. Liu, Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries, Hydrometallurgy 165 (2016) 390-396. https://doi.org/10.1016/j.hydromet.2015.09.025
  49. P. Rasoulnia, S. M. Mousavi, S. O. Rastegar, H. Azargoshas, Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods, Waste Management 52 (2016) 309-317. https://doi.org/10.1016/j.wasman.2016.04.004
  50. M. Peterskova, C. Valderrama, O. Gibert, J. Luis Cortina, Extraction of valuable metal ions (Cs, Rb, Li, U) from reverse osmosis concentrate using selective sorbents, Desalination 286 (2012) 316-323. https://doi.org/10.1016/j.desal.2011.11.042
  51. H.-Y. Shu, M.-C. Chang1, J.J. Liu, Cation resin fixed-bed column for the recovery ofvaluable THAM reagent from the wastewater, Process Safety and Environmental Protection (2016).
  52. V. Kumar, J.-C. Lee, J. Jeong, M. K. Jha, B.-S. Kim, R. Singh, Novel physical separation process for eco-friendly recycling of rare and valuable metals from end-of-life DVD-PCBs, Separation and Purification Technology 111 (2013) 145-154. https://doi.org/10.1016/j.seppur.2013.03.039
  53. L. Li, L. Zhai, X. Zhang, J. Lu, R. Chen, F. Wu, K. Amine, Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process, Journal of Power Sources 262 (2014) 380-385. https://doi.org/10.1016/j.jpowsour.2014.04.013
  54. N. Bahaloo Horeh, S. M. Mousavi, S. A. Shojaosadati, Bioleaching of valuable metals from spent lithiumion mobile phone batteries using Aspergillus niger, Journal of Power Sources 320 (2016) 257-266. https://doi.org/10.1016/j.jpowsour.2016.04.104
  55. Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, B. Xin, Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery, Journal of Cleaner Production 116 (2016) 249-258. https://doi.org/10.1016/j.jclepro.2016.01.001
  56. M. A. H. Shuva, M. A. Rhamdhani, G. A. Brooks, S. Masood, M.A. Reuter, Thermodynamics data of valuable elements relevant to e-waste processing through primary and secondary copper production: a review, Journal of Cleaner Production 131 (2016) 795-809. https://doi.org/10.1016/j.jclepro.2016.04.061
  57. J. M. Zhaoa, X. Y. Shenb, F. L. Denga,c, F. C. Wanga, C, Y. Wua, H. Z. Liu, Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A, Separation and Purification Technology 78 (2011) 345-351. https://doi.org/10.1016/j.seppur.2010.12.024
  58. Y. -M. Kuo, An alternative approach to recovering valuable metals from zinc phosphating sludge, Journal of Hazardous Materials 201-202 (2012) 265-272. https://doi.org/10.1016/j.jhazmat.2011.11.081
  59. Z. Shengqiang, H. Xiuyang, W. Dahui, Review on Comprehensive Recovery of Valuable Metals from Spent Electrode Materials of Nickel-Hydrogen Batteries, Rare Metal Materials and Engineering, 44 (2015) 73-78. https://doi.org/10.1016/S1875-5372(15)30015-1