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I. INTRODUCTION  

Index optimization refers to the process of optimizing a 
list of words which indicates a text for maximizing the 
information retrieval efficiency and performance. In the 
index optimization task, important words should be 
expanded by adding their semantically similar words for 
improving the reliability and unimportant ones should be 
removed for improving the efficiency. The scope of this 
research is restricted to the classification task where each 
word is classified into one of the three classes: ‘important 

word’ as the target of expansion, ‘neutral word’ as only 

inclusion, and ‘unimportant word’ as target of removal. 
We prepare the sample words which are labeled with one 
of the three classes and construct the classification 
capacity by learning them. In this research, we assume that 
the supervised learning algorithms are used as the 
approach to the task. 

Let us consider the facts which provide the motivations 
for doing this research. Requiring many features for 
encoding words or texts into numerical vectors causes a 
large amount of computation time [1]. The sparse 
distribution in each numerical vector as results from using 
too many features caused very poor discriminations [1]. 

Recently, it is very popular trend to represent knowledge 
into ontologies as the graphs [2][3]. Therefore, in this 
research, we attempt to encode words into graphs and 
modify the KNN (K Nearest Neighbor) into its graph 
based version, motivated by the above facts. 

Let us mention some ideas as the proposal of this 
research. In this research, we encode each word into a 
graph with its vertices which indicate text identifiers and 
its edges which indicate the semantic relations between 
them. The index optimization is viewed into the task of 
classifying words into one of the three categories and the 
similarity measure between two graphs is defined. The 
KNN is modified into the graph based version where a 
graph is given as the input data by itself, based on the 
similarity measure, and it is used as the approach to the 
index optimization. However, we need the corpus which 
provides the context for representing words into graphs. 

We also consider the benefits which are provided by 
this research as some points. We may expect the more 
symbolic and graphical representations of words as 
indicated inherently by graphs. The improved 
discrimination is expected by avoiding the sparse 
distributions which appear frequently in numerical vectors 
which represent words. We expect the better performance 
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by representing words into alternative structured forms to 
numerical vectors; the problems which are caused by 
encoding words into numerical vectors are solved, 
completely. Hence, the goal of this research is to 
implement the index optimization system with the benefits 
as a module of the information retrieval systems. 

This article is organized into the four sections. In 
Section II, we survey the relevant previous works. In 
Section III, we describe in detail what we propose in this 
research. In Section IV, we validate empirically the 
performance of the proposed version of KNN on the  

two text collections: NewsPage.com and 
20NewsGroups. In Section V, we mention the remaining 
tasks for doing the further research. 
 

II. PREVIOUS WORKS 
 
 In this section, we survey the previous cases of 

encoding texts into structured forms for using the machine 
learning algorithms to text mining tasks. The three main 
problems, huge dimensionality, sparse distribution, and 
poor transparency, have existed inherently in encoding 
texts into numerical vectors. In previous works, various 
schemes of preprocessing texts have been proposed, in 
order to solve the problems. In this survey, we focus on 
the process of encoding texts into alternative structured 
forms to numerical vectors. In other words, this section is 
intended to explore previous works on solutions to the 
problems. 

Now, we mention the popularity of encoding texts into 
numerical vectors, and the proposal and the application of 
string kernels as the solution to the above problems. In 
2002, Sebastiani insisted that the numerical vectors are the 
standard representations of texts in applying the machine 
learning algorithms to the text classifications [4]. In 2002, 
Lodhi et al. proposed the string kernel as a kernel function 
of raw texts in using the SVM (Support Vector Machine) 
to the text classification [5]. In 2004, Lesile et al. used the 
version of SVM which proposed by Lodhi et al. to the 
protein classification [6]. In 2004, Kate and Mooney also 
used the SVM version for classifying sentences by their 
meanings [7]. 

It was proposed that texts are encoded into tables 
instead of numerical vectors, as the solutions to the above 
problems: huge dimensionality, sparse distribution, and 
poor transparency. In 2008, Jo and Cho proposed the table 
matching algorithm as the approach to text classification 
[8]. In 2008, Jo also applied his proposed approach to the 
text clustering, as well as the text categorization [12]. In 
2011, Jo described as the technique of automatic text 
classification in his patent document [10]. In 2015, Jo 

improved the table matching algorithm into its more stable 
version [11]. 

Previously, it was proposed that texts should be 
encoded into string vectors as other structured forms. In 
2008, Jo modified the k means algorithm into the version 
which processes string vectors as the approach to the text 
clustering [12]. In 2010, Jo modified the two supervised 
learning algorithms, the KNN and the SVM, into the 
version as the improved approaches to the text 
classification [13]. In 2010, Jo proposed the unsupervised 
neural networks, called Neural Text Self Organizer, which 
receives the string vector as its input data [14]. In 2010, Jo 
applied the supervised neural networks, called Neural Text 
Categorizer, which gets a string vector as its input, as the 
approach to the text classification [15]. 

The above previous works proposed the string kernel as 
the kernel function of raw texts in the SVM, and tables 
and string vectors as representations of texts, in order to 
solve the problems. Because the string kernel takes a large 
amount of computation time to compute their values, it 
was used for processing short strings or sentences rather 
than texts. In the previous works on encoding texts into 
tables, only table matching algorithm was proposed; there 
is no attempt to modify the machine algorithms into their 
table based version. In the previous works on encoding 
texts into string vectors, only frequency was considered 
for defining features of string vectors. Words which are 
used as features of numerical vectors which represent texts 
have their semantic similarities among them, so the 
similarities will be used for processing sparse numerical 
vectors, in this research. 
 

III. PROPOSED WORK 
 
This section is concerned with encoding words into 

graphs, modifying the KNN (K Nearest Neighbor) into the 
graph based version and applying it to the index 
optimization, and consists of the four sections. In Section 
3.1, we deal with the process of encoding words into 
graphs. In Section 3.2, we describe formally the process of 
computing the similarity between two graphs. In Section 
3.3, we do the graph vector based KNN version as the 
approach to the index optimization. In Section 3.4, we 
focus on the process of applying the KNN to the given 
task with viewing it into a classification task. 
 
3.1. Word Encoding 

This section is concerned with the process of encoding a 
word into a graph as illustrated in Figure 1. A graph is 
defined into two sets: the vertex set and the edge set. The 
vertices and edges correspond to text identifiers and their 
relationships, respectively. A word is represented by a 
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weighted and undirected graph.  

 
Fig. 1. Steps of Encoding Word into Graph. 

 
Before encoding a word into its own graph, we need to 

construct an inverted index where each word is linked to a 
list of text. A list of words may be generated by indexing a 
corpus. Each word is associated with a list of texts which 
include it. In texts, each word has its own weight, posting 
information, and statistical information.  

Each vertex may be defined from the inverted index. In 
encoding a word into a graph, vertices correspond to list of 
texts which are linked to the given word. Some of them 
are selected by their weights as vertices; they are notated 
as follows: 

   iniii vvvvW ,...,, 21  

 
We consider the ranked selection where a fixed number of 
texts are selected by ranking them and the score based one 
where the texts whose weights are greater than or equal to 
a threshold are selected as the selection schemes. From the 
inverted index, we extract a set of vertices which indicate 
text identifiers. 

We need to define the set of edges as well as that of 
vertices for representing a word into a graph. We compute 
similarities of all possible pairs of vertices which indicate 
texts. We construct the similarity matrix whose entries 
indicates similarity measures among texts from a corpus. 
We select text pairs whose similarities are more than the 
given threshold, and define the set which consists of edges 
as follows: 

   ipiii eeeeW ,...,, 21  

 
The process of building the similarity matrix and 
computing the similarity between texts will be described 
in section 3.2.1. 

Let us consider how to represent a graph into its 
structured form in the implementation level. We may 
mention the adjacency matrix where vertices correspond 
to its rows and columns and entries indicate the edge 

weights. We regard the linked list where vertices are given 
as nodes and edges are given as pointers between them as 
another representation of a graph. A graph is represented 
into a list of edges which are given as pairs of vertex 
identifiers and each weight is associated with its own 
weight. In this research, we adopt the third scheme where 
a graph is represented into a set of edges. 
 
3.2. Graph 

This section is concerned with the operation of graphs 
and the basis for carrying it out. It consists of two 
subsections and assumes that a corpus is required for 
performing the operation. In Section 3.2.1, we describe the 
process of constructing the similarity matrix from a corpus. 
In Section 3.2.2, we define the operation on graphs 
mathematically. Therefore, this section is intended to 
describe the similarity matrix and the operation on them. 
  
3.2.1. Similarity Matrix 

This subsection is concerned with the similarity matrix 
as the basis for performing the semantic operation on 
string vectors. Each row and column of the similarity 
matrix corresponds to a text in the corpus. The similarities 
of all possible pairs of texts are given as normalized 
values between zero and one. The similarity matrix which 
we construct from the corpus is the N X N square matrix 
with symmetry elements and 1’s diagonal elements. 

Each entry of the similarity matrix indicates a similarity 
between two corresponding texts. The two documents, 

id , and jd  are indexed into two sets of words, iD , 

and jD . The similarity between the two texts is 

computed by equation (1), 
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where iD  is the cardinality of the set, iD . The 

similarity is always given as a normalized value between 
zero and one; if two documents are exactly same to each 
other, the similarity becomes 1.0 as follows: 
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and if two documents have no shared words, 

ji DD  , the similarity becomes 0.0 as follows: 
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The more advanced schemes of computing the similarity 
will be considered in next research. 

From the text collection, we build N X N square matrix 
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as follows: 
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N individual texts which are contained in the collection 

correspond to the rows and columns of the matrix. The 

entry, ijs  is computed by equation (1) as follows: 

 jiij ddsims ,  

The overestimation or underestimation of text lengths 
are prevented by the denominator in equation (1). To the 
number of texts, N, it costs quadratic complexity, 

 2NO , to build the above matrix 

Let us characterize the above similarity matrix, 
mathematically. Because each column and row 
corresponds to its same text in the diagonal positions of 
the matrix, the diagonal elements are always given 1.0 by 
equation (2). In the off-diagonal positions of the matrix, 
the values are always given as normalized ones between 

zero and one, because of jiii DDDD  20  from 

equation (2). It is proved that the similarity matrix is 
symmetric, as follows: 
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Therefore, the matrix is characterized as the symmetry 
matrix which consists of the normalized values between 
zero and one. 

The similarity matrix may be constructed automatically 
from a corpus. The N texts which are contained in the 
corpus are given as the input and each of them is indexed 
into a list of words. All possible pairs of texts are 
generated and the similarities among them are computed 
by equation (1). By computing them, we construct the 
square matrix which consists of the similarities. Once 
making the similarity matrix, it will be used continually as 
the basis for performing the operation on string vectors. 

 
3.2.2. Similarity between Graphs 

This section is concerned with the scheme of computing 
a similarity between two graphs. Words are encoded into 
graphs where vertices are text identifiers and edges are the 
similarity between texts. We assume that each graph is a 
set of edges and consider the three cases for computing the 
similarity between graphs: both coincidence, either 
coincidence, and no coincidence. The similarity between 

graphs is computed by averaging similarities among edges 
and is always given as a normalized value between zero 
and one.  

We need to consider the similarity between two 

individual edges, ie  and je  which is notated by 

 ji eesim , , and each weighted edge consist of two nodes 

and its weight as follows: 

 ilki wvve ,,  

 

and the edge weight is notated by   ii wew  . If no node 

is shared by two edges like  2.0,, BA  and  4.0,, DC , 

the similarity becomes zero. If only one node is shared by 

two edges like  2.0,, BA  and  4.0,,CB , the similarity 

becomes the product of two weights as follows: 
     jiji eweweesim ,  

 
If both nodes are shared, the similarity becomes the 
average of the two weights as follows: 

      jiji eweweesim 
2

1
, . 

 
It is assumed that each weight between edges is always 
given as normalized value between zero and one. 

The two graphs, 1G  and 2G , are expressed into the 

two sets: 

 neeeG 112111 ,..,,  and  neeeG 222212 ,..,, , 

 
and it is assumed that both graphs have same number of 
edges. All possible pairs of edges are generated from the 
two graphs. For each edge in one graph, its similarities 
with the edges in the other are computed, and the 
maximum among them is obtained as the similarity 
between an edge and a graph, by equation (2). 

   ki

n

k
i eesimGesim 21

1
21 ,max,


  (2) 

The similarity between the two graphs is set by averaging 
over the maximum similarities of edges with the other by 
equation (3), 

   



n

i
i Gesim

n
GGsim

1
2121 ,

1
,  (3) 

Because the weights of edges are always given as 
normalized values, the similarity between graphs is always 
so. 

Let us characterize the operation for computing the 
similarity between graphs, mathematically. If the two 

graphs, 1G  and 2G are identical to each other and all 

edges are weighted with 1.0 values,   iiew  ,0.1 , the 
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similarity between the two graphs becomes 1.0.  
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If the two graphs, 1G  and 2G  are so with different 
weights, the similarity between the two graphs is the 
average over weights of two graphs as follows: 
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If there is no shared edge between the two graphs, the 
similarity becomes zero as follows: 
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The similarity between the two graphs is always a 
normalized value between zero and one as proved from 
the mathematical characterization. 

Let us consider the complexity of computing a 
similarity between graphs to the number of edges in both 
graphs. The number of all possible pairs becomes 
 

2

1nn
 to the number of edge, n . The similarities of all 

possible pairs are computed by the above process, 
 

2

1nn
 times. We derive the quadratic complexity 

 2nO , for computing the similarities. Therefore, we need 

to optimize the number of edges for representing a word 
into a graph by controlling the threshold between the 
reliability and the computation speed. 

 
3.3. Proposed Version of KNN 

This section is concerned with the proposed KNN 
version as the approach to the text categorization. Raw 
texts are encoded into graphs by the process which was 
described in Section 3.1. In this section, we attempt to the 
traditional KNN into the version where a graph is given as 
the input data. The version is intended to improve the 
classification performance by avoiding problems from 

encoding texts into numerical vectors.  
The traditional KNN version is illustrated in Figure 2. 

The sample words which are labeled with the positive 
class or the negative class are encoded into numerical 
vectors. The similarities of the numerical vector which 
represents a novice word with those representing sample 
words are computed using the Euclidean distance or the 
cosine similarity. The k most similar sample words are 
selected as the k nearest neighbors and the label of the 
novice entity is decided by the majority of their labels. 
However, note that the traditional KNN version is very 
fragile in computing the similarity between very sparse 
numerical vectors. 

 
Fig. 2. The Traditional Version of KNN 

 

Separately from the traditional one, we illustrate the 
classification process by the proposed version in Figure 3. 
The sample texts labeled with the positive or negative 
class are encoded into graphs by the process described in 
section 1. The similarity between two graphs is computed 
by the scheme which was described in Section 3.2.2. 
Identically to the traditional version, in the proposed 
version, the k most similarity samples are selected, and the 
label of the novice one is decided by voting ones of 
sample entities. Because the sparse distributions in graphs 
are never available inherently, the poor discriminations by 
sparse distributions are certainly overcome in this research. 

 

 
Fig. 3. The Proposed Version of KNN 
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We may derive some variants from the proposed KNN 
version. We may assign different weights to selected 
neighbors instead of identical ones: the highest weights to 
the first nearest neighbor and the lowest weight to the last 
one. Instead of a fixed number of nearest neighbors, we 
select any number of training examples within a hyper-
sphere whose center is the given novice example as 
neighbors. The categorical scores are computed 
proportionally to similarities with training examples, 
instead of selecting nearest neighbors. We may also 
consider the variants where more than two variants are 
combined with each other. 

In this research, once we define the similarity measure 
between graphs, we are able to modify the KNN. For 
modifying the k means algorithm, we need to define one 
more operation which build prototype graph as 
representative among ones. For modifying the perceptron 
or the MLP (Multiple Layer Peceptron) where both input 
and weights are given as graphs, we need the update rule 
of graphs. In order to define more advanced operations on 
graphs, we need to do more theoretical research on 
operations based on the graph theory.   
 
3.4. Application to Index Optimization 

 This section is concerned with the scheme of applying 
the proposed KNN version which was described in section 
3 to the index optimization task. Before doing so, we need 
to transform the task into one where machine learning 
algorithms are applicable as the flexible and adaptive 
models. We prepare the words which are labeled with 
‘expansion’, ‘inclusion’ or ‘removal’ as the sample data. 
The words are encoded into tables by the scheme which 
was described in Section 3.2.  

In this research, the index optimization is viewed as a 
classification task, as shown in Figure 4. A text is given as 
the input, and a list of words is extracted by indexing the 
text. Each word is classified by the classifier into one of 
the three categories: ‘expansion’, ‘inclusion’, or, 
‘removal’. In the task, the text is mapped into words 
which are classified with ‘expansion’ or ‘inclusion’. The 
similar words to one labeled with ‘expansion’ will be 
added from external sources. 

 
Fig. 4. Map of Index Optimization into Classification Task 

 
We need to prepare sample words which are labeled 

with one of the three categories, before classifying a 
novice one or ones. A text collection is segmented into 
sub-collections of content based similar words which are 

called domains, manually or automatically. We prepare 
sample words which are labeled manually, domain by 
domain. To each domain, we assign and train a classifier 
with the words in the corresponding sub-collection. When 
a text is given as the input, the classifier which 
corresponds to the most similar domain is selected among 
them. 

Let us consider the process presented in Figure 5 where 
an article is given as the input and a list of essential words 
is extracted as the output. We nominate the classifier 
which corresponds to the subgroup which is closest to the 
given article with respect to its content. A list of words is 
extracted by indexing the article, and each word is 
encoded. The words are classified by the nominated 
classifier into one of the three categories, and we select 
ones which are labeled with ‘expansion’ or ‘reservation’ 
as the optimized index. The addition of external words 
which are semantically similar as ones labeled with 
‘expansion’ is set as the subsequent task. 

 

 
Fig. 5. Process of applying KNN to Index Optimization 

 
Even if the index optimization is viewed as an instance 

of word categorization, it needs to be distinguished from 
the topic based word categorization. The word 
categorization is given as a single multiple classification 
or multiple binary classifications, whereas the index 
optimization is done as a multiple classification or three 
binary classification tasks. In the word categorization, 
each word is classified semantically into one or some of 
the predefined topics, whereas in the index optimization, it 
is classified one of the three actions. In the word 
categorization, each word is classified by its meaning, 
whereas in the index optimization, it is classified by its 
importance to the given text. In the word categorization, 
when the given task is decomposed into binary 
classification tasks, a classifier is assigned to each topic, 
whereas, in the index optimization, a classifier is done to 
each domain. 
 



Journal of Multimedia and Information System VOL. 3, NO. 3, September 2016(pp. 53-62): ISSN 2383-7632(Online) 
http://dx.doi.org/10.9717/JMIS.2016.3.3.53 

59                                                 

 

IV. EXPERIMENTS 
 

This section is concerned with the empirical validations 
of the proposed version of KNN, as the approach to index 
optimization. The goal of these experiments is to compare 
the proposed version where words are encoded into graphs, 
with the traditional one where they are done into 
numerical vectors. In Section 1, we make the empirical 
validations of the proposed version about the index 
optimization within each of four topics from the text 
collection, NewsPage.com. In Section 2, we make the 
empirical validation in each topic from another collection, 
20NewsGroups.  
 
4.1. NewsPage.com 

This section is concerned with the experiments for 
evaluating the two versions of KNN as the index 
optimization tools within each topic from NewsPage.com. 
NewsPage.com from which the experimental data is 
generated, is the small collection of texts which were 
previously used for evaluating text classification 
algorithms. Words are extracted by indexing included texts 
and the test data is constructed by labeling them with one 
of the three importance levels: expansion, inclusion, and 
removal. The results from evaluating the two versions 
based on the labeled words are presented in Figure 1.  

We illustrate the distributions of texts and words which 
are labeled with one of the three importance levels in the 
collection, NewsPage.com, in Table 1. The text collection, 
NewsPage.com, is built by copying and pasting news 
articles in the web site, newspage.com, individually, topic 
by topic. The text collection was previously used for 
evaluating performances of text classifiers which decide 
topics of novice texts, automatically. Currently, we use the 
text collection to extract words by indexing individual 
texts and manually labeling word with their own 
importance level to its belonging text. The test data which 
is used in this experiment consists of the four collections 
of words which are labeled with one of the three 
importance levels, exclusively; in each topic, 125 words 
are allocated evenly to each importance level, among 375 
ones. 

 
Table 1. Distribution of Texts and Labeled Words in 
NewsPage.com 

Category #Texts 
#Training 
Words  

#Test 
Words 

Business 
Health 
Internet 
Sports 

500 
500 
500 
500 

300 
300 
300 
300 

75 
75 
75 
75 

Total 2,000 1,200 300 

Let us mention the process of doing the empirical 
validations on the topics from NewsPage.com. Words are 
extracted from individual texts, and labeled manually by 
voting the decisions of three subjects. We select 125 words 
at random in each importance level; we obtain 375 words 
with their completely balanced distribution over the three 
importance levels, in each topic. The set of 375 words is 
divided into the two sets: 300 words are allocated to the 
training set, and the others, 75 words, are allocated to the 
test set, as shown in Table 1. The words are encoded into 
50 dimensional numerical vectors for evaluating the 
traditional version, and 50 sized graphs which consists of 
50 edges, for evaluating the proposed version. 

In Figure 6, we illustrate the results from applying the 
two versions of KNN to the index optimization on 75 test 
words in each topic. The y-axis in Figure 6 indicates the 
accuracy of classifying the 75 test words into one of the 
three importance levels. The gray bars and the black bars 
indicate the performances of the traditional version and 
the proposed version, respectively. The x-axis indicates 
the list of topics from NewsPage.com and the average 
over them. As shown in Figure 1, the proposed version of 
KNN works better than the traditional one over the four 
topics. 

 

 
Fig. 6. Results from Evaluating NV and Graph based KNN in 

Topics of NewsPage.com 

 
Let us discuss the results from comparing the two 

versions with each other in performing the index 
optimizations on the topics from NewsPage.com. The both 
versions of KNN works best in the topic, ‘Business’. In 
average, the traditional version has its classification 
accuracy below 0.3, while the proposed version does it 
above the value. Because depending on individual text as 
well as topic, same word may be labeled differently, the 
classification performances of the both versions is not 
high; stay below 0.5. However, the significance of this 
experiment is that the proposed version works relatively 
better. 
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4.2. 20NewsGroups 
This section is concerned with the experiments for 

evaluating the both versions as the index optimizations in 
the topics from 20NewsGroups. The process of doing the 
experiments to each topic is the same to that of 
experiments which was covered in Section 4.1. The 
proposed of KNN obtains the three wins among the four 
topics; it works slightly better than traditional one, on 
average.  

In Table 2, we illustrate the distribution of the number 
of texts and labeled words over the four representative 
topics within the scientific domain in 20NewsGroups. The 
text collection, 20NewsGroups, actually consists of the 20 
topics; we select the four topics under its parent topic, 
‘Science’ among them. We obtain 375 labeled words, 
keeping the completely balanced distributions over the 
three importance levels in each topic. Among them, 300 
words are used as training words, and 75 words are used 
as test words for evaluating the both versions. The two 
text collections which are used in the experiments of this 
research consist of texts which are labeled with only one 
category, exclusively, but the text collection, Reuter21578, 
which has been used most popularly for evaluating text 
classification algorithms, consists of texts which are 
labeled with more than one. 

 
Table 2. Distribution of Texts and Labeled Words in Four 
Representative Topics of 20NewsGroups 

Category #Texts 
#Training 
Words  

#Test 
Words 

Electro 
Medicine 
Script 
Space 

1,000 
1,000 
1,000 
1,000 

300 
300 
300 
300 

75 
75 
75 
75 

Total 4,000 1,200 300 
 
The process of doing the experiment in each category is 

the same to identical to that of the experiment in Section 
4.1. The words are extracted from texts in the selected 
topics of 20NewsGroups, and they are labeled by voting 
the decisions of three subjects. We select 125 words in 
each importance level at random, so that the completely 
balanced distribution is maintained. As shown in Table 2, 
the set of labeled words is divided identically to the case 
in the previous experiment. The words are encoded into 
numerical vectors and graphs with the size which is 
identical to the case of the previous experiment. 

Figure 7 presents the results from applying the two 
versions of KNN to the index optimization on words from 
the four topics of 20NewsGroups. The result framework in 
Figure 2 is identical to that in Figure 7. The differences 
from the results which are shown in Figure 7 are the listed 

four topics and the accuracy values of the two versions. 
The gray bar and the black bar in each topic indicate the 
accuracies of the traditional and proposed versions, 
respectively. Even if the proposed version is lost in the 
topic, ‘Electro’, it works slightly better than the traditional 
one, on average. 

 

 
Fig. 7. Results from Evaluating NV and Graph based KNN in 

Topics of 20NewsGroup 

 
Let us discuss the results from the experiments which is 

shown in Figure 7. The both versions of KNN works best 
in the topic, ‘Med’. The accuracies of the both versions are 
between 0.34 and 0.36 on average; the proposed version 
has its slightly higher accuracy. However, the proposed 
version wins outstandingly over the traditional one, in 
three of the four topics. Finally, with the view of 
tournaments of the two versions, it is concluded that the 
proposed version wins by three to one. 
 

V. CONCLUSION 
 

 Let us consider the significances of this research. The 
importance of words is divided into the three levels and 
the index optimization is viewed as a classification. Words 
are encoded into graphs as the alternative representations 
to numerical vectors and the similarity measures between 
them is defined. The KNN is modified into the graph 
based version which receives a graph as its input data, 
instead of a numerical vector. The modified version of 
KNN is applied to the task, index optimization. 

Let us mention the remaining tasks for doing the further 
research. We need to observe the performances of the 
modified version for optimizing index of texts in specific 
domains: finance, law, engineering, and medicine. We 
define more operations on graphs and characterize them 
mathematically, based on the graph theory. We modify 
other machine learning algorithms such as Naïve Bayes, 
Support Vector Machine, Decision Tree, and Neural 
Networks, like so. We may consider implementing the 
graph based deep learning algorithms which recently 
became the popular trends of machine learning algorithms. 



Journal of Multimedia and Information System VOL. 3, NO. 3, September 2016(pp. 53-62): ISSN 2383-7632(Online) 
http://dx.doi.org/10.9717/JMIS.2016.3.3.53 

61                                                 

 

 

Acknowledgement 
This work was supported by 2016 Hongik University 
Research Fund. 

REFERENCES 

[1] T. Jo, “The Implementation of Dynamic Document 
Organization using Text Categorization and Text 
Clustering,” PhD Dissertation of University of Ottawa, 
2006. 

[2] N. F. Noy and C. D. Hafner, “State of the Art in 
Ontology Design,” AI Magazine, vol. 18, no. 3, 1997. 

[3] D. Allemang and J. Hendler, Semantic Web for the 
Working Ontologies, Mrgan Kaufmann, 2011. 

[4] F. Sebastiani, “Machine Learning in Automated Text 
Categorization," ACM Computing Survey, vol. 34, no. 
1, pp. 1-47, 2002. 

[5] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini 
and C. Watkins, “Text Classification with String 
Kernels,” Journal of Machine Learning Research, vol. 
2, no. 2, pp. 419-444, 2002. 

[6] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. 
Noble, “Mismatch String Kernels for Discriminative 
Protein Classification,” Bioinformatics, vol. 20, no. 4, 
pp. 467-476, 2004. 

[7] R. J. Kate and R. J. Mooney, “Using String Kernels for 
Learning Semantic Parsers,” in Proceedings of the 
21st International Conference on Computational 
Linguistics and the 44th annual meeting of the 
Association for Computational Linguistics, pp. 913-
920, 2006. 

[8] T. Jo and D. Cho, “Index based Approach for Text 
Categorization,” International Journal of Mathematics 
and Computers in Simulation, vol. 2, no. 1, pp. 127-
132, 2008. 

[9] T. Jo, “Single Pass Algorithm for Text Clustering by 
Encoding Documents into Tables,” Journal of Korea 
Multimedia Society, vol. 11, no. 12, pp. 1749-1757, 
2008. 

[10] T. Jo, “Device and Method for Categorizing 
Electronic Document Automatically,” Patent 
Document, 10-2009-0041272, 10-1071495, 2011. 

[11] T. Jo, “Normalized Table Matching Algorithm as 
Approach to Text Categorization,” Soft Computing, 
vol. 19, no. 4, pp. 839-849, 2015. 

[12] T. Jo, “Inverted Index based Modified Version of K-
Means Algorithm for Text Clustering,” Journal of 
Information Processing Systems, vol. 4, no. 2, pp. 67-

76, 2008. 

[13] T. Jo, “Representation of Texts into String Vectors 
for Text Categorization,” Journal of Computing 
Science and Engineering, vol. 4, no. 2, pp. 110-127, 
2010. 

[14] T. Jo, “NTSO (Neural Text Self Organizer): A New 
Neural Network for Text Clustering,” Journal of 
Network Technology, vol. 1, no. 1, pp. 31-43, 2010.   

[15] T. Jo, “NTC (Neural Text Categorizer): Neural 
Network for Text Categorization,” International 
Journal of Information Studies, vol. 2, no. 2, pp83-96, 
2010. 

 

Authors 
 

Taeho Jo is currently working for 
Hongik University as a faculty member.  
He received his Bachelor degree from 
Korea University in 1994, his Master 
degree from Pohang University of 
Science and Technology in 1997, and his 
PhD degree from University of Ottawa in 
2006. His research area spans mainly 

over text mining, neural networks, machine learning, and 
information retrieval. He has the four years experience of 
working for industrial organizations and ten years experience of 
working for academic ones. In 2016, he was awarded in the 
biography dictionary, "Marquis Who's Who in the World". 


