
Journal of Multimedia and Information System VOL. 3, NO. 3, September 2016(pp. 53-62): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2016.3.3.53

53

I. INTRODUCTION

Index optimization refers to the process of optimizing a
list of words which indicates a text for maximizing the
information retrieval efficiency and performance. In the
index optimization task, important words should be
expanded by adding their semantically similar words for
improving the reliability and unimportant ones should be
removed for improving the efficiency. The scope of this
research is restricted to the classification task where each
word is classified into one of the three classes: ‘important

word’ as the target of expansion, ‘neutral word’ as only

inclusion, and ‘unimportant word’ as target of removal.
We prepare the sample words which are labeled with one
of the three classes and construct the classification
capacity by learning them. In this research, we assume that
the supervised learning algorithms are used as the
approach to the task.

Let us consider the facts which provide the motivations
for doing this research. Requiring many features for
encoding words or texts into numerical vectors causes a
large amount of computation time [1]. The sparse
distribution in each numerical vector as results from using
too many features caused very poor discriminations [1].

Recently, it is very popular trend to represent knowledge
into ontologies as the graphs [2][3]. Therefore, in this
research, we attempt to encode words into graphs and
modify the KNN (K Nearest Neighbor) into its graph
based version, motivated by the above facts.

Let us mention some ideas as the proposal of this
research. In this research, we encode each word into a
graph with its vertices which indicate text identifiers and
its edges which indicate the semantic relations between
them. The index optimization is viewed into the task of
classifying words into one of the three categories and the
similarity measure between two graphs is defined. The
KNN is modified into the graph based version where a
graph is given as the input data by itself, based on the
similarity measure, and it is used as the approach to the
index optimization. However, we need the corpus which
provides the context for representing words into graphs.

We also consider the benefits which are provided by
this research as some points. We may expect the more
symbolic and graphical representations of words as
indicated inherently by graphs. The improved
discrimination is expected by avoiding the sparse
distributions which appear frequently in numerical vectors
which represent words. We expect the better performance

Graph based KNN for Optimizing Index of News Articles

Taeho Jo*

Abstract

This research proposes the index optimization as a classification task and application of the graph based KNN. We need the index
optimization as an important task for maximizing the information retrieval performance. And we try to solve the problems in encoding
words into numerical vectors, such as huge dimensionality and sparse distribution, by encoding them into graphs as the alternative
representations to numerical vectors. In this research, the index optimization is viewed as a classification task, the similarity measure
between graphs is defined, and the KNN is modified into the graph based version based on the similarity measure, and it is applied to the
index optimization task. As the benefits from this research, by modifying the KNN so, we expect the improvement of classification
performance, more graphical representations of words which is inherent in graphs, the ability to trace more easily results from classifying
words. In this research, we will validate empirically the proposed version in optimizing index on the two text collections: NewsPage.com
and 20NewsGroups.

Key Words: Graph based KNN, Graph Similarity, Index Optimization.

Manuscript received Aug. 12, 2016; Revised Sept. 9, 2016; Accepted Oct. 10, 2016. (ID No. JMIS-2016-0012)
Corresponding Author (*): Taeho Jo, Hongik University, 94 Wausan-ro Mapo-gu Seoul, 04066, Korea, +82-2-320-1114,

tjo018@hongik.ac.kr .

Graph based KNN for Optimizing Index of News Articles

54

by representing words into alternative structured forms to
numerical vectors; the problems which are caused by
encoding words into numerical vectors are solved,
completely. Hence, the goal of this research is to
implement the index optimization system with the benefits
as a module of the information retrieval systems.

This article is organized into the four sections. In
Section II, we survey the relevant previous works. In
Section III, we describe in detail what we propose in this
research. In Section IV, we validate empirically the
performance of the proposed version of KNN on the

two text collections: NewsPage.com and
20NewsGroups. In Section V, we mention the remaining
tasks for doing the further research.

II. PREVIOUS WORKS

 In this section, we survey the previous cases of

encoding texts into structured forms for using the machine
learning algorithms to text mining tasks. The three main
problems, huge dimensionality, sparse distribution, and
poor transparency, have existed inherently in encoding
texts into numerical vectors. In previous works, various
schemes of preprocessing texts have been proposed, in
order to solve the problems. In this survey, we focus on
the process of encoding texts into alternative structured
forms to numerical vectors. In other words, this section is
intended to explore previous works on solutions to the
problems.

Now, we mention the popularity of encoding texts into
numerical vectors, and the proposal and the application of
string kernels as the solution to the above problems. In
2002, Sebastiani insisted that the numerical vectors are the
standard representations of texts in applying the machine
learning algorithms to the text classifications [4]. In 2002,
Lodhi et al. proposed the string kernel as a kernel function
of raw texts in using the SVM (Support Vector Machine)
to the text classification [5]. In 2004, Lesile et al. used the
version of SVM which proposed by Lodhi et al. to the
protein classification [6]. In 2004, Kate and Mooney also
used the SVM version for classifying sentences by their
meanings [7].

It was proposed that texts are encoded into tables
instead of numerical vectors, as the solutions to the above
problems: huge dimensionality, sparse distribution, and
poor transparency. In 2008, Jo and Cho proposed the table
matching algorithm as the approach to text classification
[8]. In 2008, Jo also applied his proposed approach to the
text clustering, as well as the text categorization [12]. In
2011, Jo described as the technique of automatic text
classification in his patent document [10]. In 2015, Jo

improved the table matching algorithm into its more stable
version [11].

Previously, it was proposed that texts should be
encoded into string vectors as other structured forms. In
2008, Jo modified the k means algorithm into the version
which processes string vectors as the approach to the text
clustering [12]. In 2010, Jo modified the two supervised
learning algorithms, the KNN and the SVM, into the
version as the improved approaches to the text
classification [13]. In 2010, Jo proposed the unsupervised
neural networks, called Neural Text Self Organizer, which
receives the string vector as its input data [14]. In 2010, Jo
applied the supervised neural networks, called Neural Text
Categorizer, which gets a string vector as its input, as the
approach to the text classification [15].

The above previous works proposed the string kernel as
the kernel function of raw texts in the SVM, and tables
and string vectors as representations of texts, in order to
solve the problems. Because the string kernel takes a large
amount of computation time to compute their values, it
was used for processing short strings or sentences rather
than texts. In the previous works on encoding texts into
tables, only table matching algorithm was proposed; there
is no attempt to modify the machine algorithms into their
table based version. In the previous works on encoding
texts into string vectors, only frequency was considered
for defining features of string vectors. Words which are
used as features of numerical vectors which represent texts
have their semantic similarities among them, so the
similarities will be used for processing sparse numerical
vectors, in this research.

III. PROPOSED WORK

This section is concerned with encoding words into

graphs, modifying the KNN (K Nearest Neighbor) into the
graph based version and applying it to the index
optimization, and consists of the four sections. In Section
3.1, we deal with the process of encoding words into
graphs. In Section 3.2, we describe formally the process of
computing the similarity between two graphs. In Section
3.3, we do the graph vector based KNN version as the
approach to the index optimization. In Section 3.4, we
focus on the process of applying the KNN to the given
task with viewing it into a classification task.

3.1. Word Encoding

This section is concerned with the process of encoding a
word into a graph as illustrated in Figure 1. A graph is
defined into two sets: the vertex set and the edge set. The
vertices and edges correspond to text identifiers and their
relationships, respectively. A word is represented by a

Journal of Multimedia and Information System VOL. 3, NO. 3, September 2016(pp. 53-62): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2016.3.3.53

55

weighted and undirected graph.

Fig. 1. Steps of Encoding Word into Graph.

Before encoding a word into its own graph, we need to

construct an inverted index where each word is linked to a
list of text. A list of words may be generated by indexing a
corpus. Each word is associated with a list of texts which
include it. In texts, each word has its own weight, posting
information, and statistical information.

Each vertex may be defined from the inverted index. In
encoding a word into a graph, vertices correspond to list of
texts which are linked to the given word. Some of them
are selected by their weights as vertices; they are notated
as follows:

 iniii vvvvW ,...,, 21

We consider the ranked selection where a fixed number of
texts are selected by ranking them and the score based one
where the texts whose weights are greater than or equal to
a threshold are selected as the selection schemes. From the
inverted index, we extract a set of vertices which indicate
text identifiers.

We need to define the set of edges as well as that of
vertices for representing a word into a graph. We compute
similarities of all possible pairs of vertices which indicate
texts. We construct the similarity matrix whose entries
indicates similarity measures among texts from a corpus.
We select text pairs whose similarities are more than the
given threshold, and define the set which consists of edges
as follows:

 ipiii eeeeW ,...,, 21

The process of building the similarity matrix and
computing the similarity between texts will be described
in section 3.2.1.

Let us consider how to represent a graph into its
structured form in the implementation level. We may
mention the adjacency matrix where vertices correspond
to its rows and columns and entries indicate the edge

weights. We regard the linked list where vertices are given
as nodes and edges are given as pointers between them as
another representation of a graph. A graph is represented
into a list of edges which are given as pairs of vertex
identifiers and each weight is associated with its own
weight. In this research, we adopt the third scheme where
a graph is represented into a set of edges.

3.2. Graph

This section is concerned with the operation of graphs
and the basis for carrying it out. It consists of two
subsections and assumes that a corpus is required for
performing the operation. In Section 3.2.1, we describe the
process of constructing the similarity matrix from a corpus.
In Section 3.2.2, we define the operation on graphs
mathematically. Therefore, this section is intended to
describe the similarity matrix and the operation on them.

3.2.1. Similarity Matrix

This subsection is concerned with the similarity matrix
as the basis for performing the semantic operation on
string vectors. Each row and column of the similarity
matrix corresponds to a text in the corpus. The similarities
of all possible pairs of texts are given as normalized
values between zero and one. The similarity matrix which
we construct from the corpus is the N X N square matrix
with symmetry elements and 1’s diagonal elements.

Each entry of the similarity matrix indicates a similarity
between two corresponding texts. The two documents,

id , and jd are indexed into two sets of words, iD ,

and jD . The similarity between the two texts is

computed by equation (1),

ji

ji
ji

DD

DD
ddsim

2
, , (1)

where iD is the cardinality of the set, iD . The

similarity is always given as a normalized value between
zero and one; if two documents are exactly same to each
other, the similarity becomes 1.0 as follows:

 0.1
2

,

ji

ii
ii

DD

DD
ddsim

and if two documents have no shared words,

ji DD , the similarity becomes 0.0 as follows:

 0.0
2

,

ji

ii
ii

DD

DD
ddsim

The more advanced schemes of computing the similarity
will be considered in next research.

From the text collection, we build N X N square matrix

Graph based KNN for Optimizing Index of News Articles

56

as follows:

NNNN

N

N

sss

sss

sss

...

............

...

...

21

22221

11211

N individual texts which are contained in the collection

correspond to the rows and columns of the matrix. The

entry, ijs is computed by equation (1) as follows:

 jiij ddsims ,

The overestimation or underestimation of text lengths
are prevented by the denominator in equation (1). To the
number of texts, N, it costs quadratic complexity,

 2NO , to build the above matrix

Let us characterize the above similarity matrix,
mathematically. Because each column and row
corresponds to its same text in the diagonal positions of
the matrix, the diagonal elements are always given 1.0 by
equation (2). In the off-diagonal positions of the matrix,
the values are always given as normalized ones between

zero and one, because of jiii DDDD 20 from

equation (2). It is proved that the similarity matrix is
symmetric, as follows:

 jiij

ij

ij

ji

ji
jiij

sddsim

DD

DD

DD

DD
ddsims

,

22
,

Therefore, the matrix is characterized as the symmetry
matrix which consists of the normalized values between
zero and one.

The similarity matrix may be constructed automatically
from a corpus. The N texts which are contained in the
corpus are given as the input and each of them is indexed
into a list of words. All possible pairs of texts are
generated and the similarities among them are computed
by equation (1). By computing them, we construct the
square matrix which consists of the similarities. Once
making the similarity matrix, it will be used continually as
the basis for performing the operation on string vectors.

3.2.2. Similarity between Graphs

This section is concerned with the scheme of computing
a similarity between two graphs. Words are encoded into
graphs where vertices are text identifiers and edges are the
similarity between texts. We assume that each graph is a
set of edges and consider the three cases for computing the
similarity between graphs: both coincidence, either
coincidence, and no coincidence. The similarity between

graphs is computed by averaging similarities among edges
and is always given as a normalized value between zero
and one.

We need to consider the similarity between two

individual edges, ie and je which is notated by

 ji eesim , , and each weighted edge consist of two nodes

and its weight as follows:

 ilki wvve ,,

and the edge weight is notated by ii wew . If no node

is shared by two edges like 2.0,, BA and 4.0,, DC ,

the similarity becomes zero. If only one node is shared by

two edges like 2.0,, BA and 4.0,,CB , the similarity

becomes the product of two weights as follows:
 jiji eweweesim ,

If both nodes are shared, the similarity becomes the
average of the two weights as follows:

 jiji eweweesim
2

1
, .

It is assumed that each weight between edges is always
given as normalized value between zero and one.

The two graphs, 1G and 2G , are expressed into the

two sets:

 neeeG 112111 ,..,, and neeeG 222212 ,..,, ,

and it is assumed that both graphs have same number of
edges. All possible pairs of edges are generated from the
two graphs. For each edge in one graph, its similarities
with the edges in the other are computed, and the
maximum among them is obtained as the similarity
between an edge and a graph, by equation (2).

 ki

n

k
i eesimGesim 21

1
21 ,max,

 (2)

The similarity between the two graphs is set by averaging
over the maximum similarities of edges with the other by
equation (3),

n

i
i Gesim

n
GGsim

1
2121 ,

1
, (3)

Because the weights of edges are always given as
normalized values, the similarity between graphs is always
so.

Let us characterize the operation for computing the
similarity between graphs, mathematically. If the two

graphs, 1G and 2G are identical to each other and all

edges are weighted with 1.0 values, iiew ,0.1 , the

Journal of Multimedia and Information System VOL. 3, NO. 3, September 2016(pp. 53-62): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2016.3.3.53

57

similarity between the two graphs becomes 1.0.

 0.1,
1

,

0.1
2

1
,

1
21

n

i
ii

iiii

eesim
n

GGsim

eweweesim

 0.1, 21 GGsim

If the two graphs, 1G and 2G are so with different
weights, the similarity between the two graphs is the
average over weights of two graphs as follows:

n

i
i

n

i
i

n

i
ii

n

i
ii

iiii

ewew
n

ewew
n

eesim
n

GGsim

eweweesim

11

1

1
21

21

2

1

2

1

,
1

,

2

1
,

If there is no shared edge between the two graphs, the
similarity becomes zero as follows:

 0.0,max, 21
1

21

ki

n

k
i eesimGesim

 0.00.0
1

,
1

,
11

2121

n

i

n

i
i n

Gesim
n

GGsim

The similarity between the two graphs is always a
normalized value between zero and one as proved from
the mathematical characterization.

Let us consider the complexity of computing a
similarity between graphs to the number of edges in both
graphs. The number of all possible pairs becomes

2

1nn
 to the number of edge, n . The similarities of all

possible pairs are computed by the above process,

2

1nn
 times. We derive the quadratic complexity

 2nO , for computing the similarities. Therefore, we need

to optimize the number of edges for representing a word
into a graph by controlling the threshold between the
reliability and the computation speed.

3.3. Proposed Version of KNN

This section is concerned with the proposed KNN
version as the approach to the text categorization. Raw
texts are encoded into graphs by the process which was
described in Section 3.1. In this section, we attempt to the
traditional KNN into the version where a graph is given as
the input data. The version is intended to improve the
classification performance by avoiding problems from

encoding texts into numerical vectors.
The traditional KNN version is illustrated in Figure 2.

The sample words which are labeled with the positive
class or the negative class are encoded into numerical
vectors. The similarities of the numerical vector which
represents a novice word with those representing sample
words are computed using the Euclidean distance or the
cosine similarity. The k most similar sample words are
selected as the k nearest neighbors and the label of the
novice entity is decided by the majority of their labels.
However, note that the traditional KNN version is very
fragile in computing the similarity between very sparse
numerical vectors.

Fig. 2. The Traditional Version of KNN

Separately from the traditional one, we illustrate the
classification process by the proposed version in Figure 3.
The sample texts labeled with the positive or negative
class are encoded into graphs by the process described in
section 1. The similarity between two graphs is computed
by the scheme which was described in Section 3.2.2.
Identically to the traditional version, in the proposed
version, the k most similarity samples are selected, and the
label of the novice one is decided by voting ones of
sample entities. Because the sparse distributions in graphs
are never available inherently, the poor discriminations by
sparse distributions are certainly overcome in this research.

Fig. 3. The Proposed Version of KNN

Graph based KNN for Optimizing Index of News Articles

58

We may derive some variants from the proposed KNN
version. We may assign different weights to selected
neighbors instead of identical ones: the highest weights to
the first nearest neighbor and the lowest weight to the last
one. Instead of a fixed number of nearest neighbors, we
select any number of training examples within a hyper-
sphere whose center is the given novice example as
neighbors. The categorical scores are computed
proportionally to similarities with training examples,
instead of selecting nearest neighbors. We may also
consider the variants where more than two variants are
combined with each other.

In this research, once we define the similarity measure
between graphs, we are able to modify the KNN. For
modifying the k means algorithm, we need to define one
more operation which build prototype graph as
representative among ones. For modifying the perceptron
or the MLP (Multiple Layer Peceptron) where both input
and weights are given as graphs, we need the update rule
of graphs. In order to define more advanced operations on
graphs, we need to do more theoretical research on
operations based on the graph theory.

3.4. Application to Index Optimization

 This section is concerned with the scheme of applying
the proposed KNN version which was described in section
3 to the index optimization task. Before doing so, we need
to transform the task into one where machine learning
algorithms are applicable as the flexible and adaptive
models. We prepare the words which are labeled with
‘expansion’, ‘inclusion’ or ‘removal’ as the sample data.
The words are encoded into tables by the scheme which
was described in Section 3.2.

In this research, the index optimization is viewed as a
classification task, as shown in Figure 4. A text is given as
the input, and a list of words is extracted by indexing the
text. Each word is classified by the classifier into one of
the three categories: ‘expansion’, ‘inclusion’, or,
‘removal’. In the task, the text is mapped into words
which are classified with ‘expansion’ or ‘inclusion’. The
similar words to one labeled with ‘expansion’ will be
added from external sources.

Fig. 4. Map of Index Optimization into Classification Task

We need to prepare sample words which are labeled

with one of the three categories, before classifying a
novice one or ones. A text collection is segmented into
sub-collections of content based similar words which are

called domains, manually or automatically. We prepare
sample words which are labeled manually, domain by
domain. To each domain, we assign and train a classifier
with the words in the corresponding sub-collection. When
a text is given as the input, the classifier which
corresponds to the most similar domain is selected among
them.

Let us consider the process presented in Figure 5 where
an article is given as the input and a list of essential words
is extracted as the output. We nominate the classifier
which corresponds to the subgroup which is closest to the
given article with respect to its content. A list of words is
extracted by indexing the article, and each word is
encoded. The words are classified by the nominated
classifier into one of the three categories, and we select
ones which are labeled with ‘expansion’ or ‘reservation’
as the optimized index. The addition of external words
which are semantically similar as ones labeled with
‘expansion’ is set as the subsequent task.

Fig. 5. Process of applying KNN to Index Optimization

Even if the index optimization is viewed as an instance

of word categorization, it needs to be distinguished from
the topic based word categorization. The word
categorization is given as a single multiple classification
or multiple binary classifications, whereas the index
optimization is done as a multiple classification or three
binary classification tasks. In the word categorization,
each word is classified semantically into one or some of
the predefined topics, whereas in the index optimization, it
is classified one of the three actions. In the word
categorization, each word is classified by its meaning,
whereas in the index optimization, it is classified by its
importance to the given text. In the word categorization,
when the given task is decomposed into binary
classification tasks, a classifier is assigned to each topic,
whereas, in the index optimization, a classifier is done to
each domain.

Journal of Multimedia and Information System VOL. 3, NO. 3, September 2016(pp. 53-62): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2016.3.3.53

59

IV. EXPERIMENTS

This section is concerned with the empirical validations
of the proposed version of KNN, as the approach to index
optimization. The goal of these experiments is to compare
the proposed version where words are encoded into graphs,
with the traditional one where they are done into
numerical vectors. In Section 1, we make the empirical
validations of the proposed version about the index
optimization within each of four topics from the text
collection, NewsPage.com. In Section 2, we make the
empirical validation in each topic from another collection,
20NewsGroups.

4.1. NewsPage.com

This section is concerned with the experiments for
evaluating the two versions of KNN as the index
optimization tools within each topic from NewsPage.com.
NewsPage.com from which the experimental data is
generated, is the small collection of texts which were
previously used for evaluating text classification
algorithms. Words are extracted by indexing included texts
and the test data is constructed by labeling them with one
of the three importance levels: expansion, inclusion, and
removal. The results from evaluating the two versions
based on the labeled words are presented in Figure 1.

We illustrate the distributions of texts and words which
are labeled with one of the three importance levels in the
collection, NewsPage.com, in Table 1. The text collection,
NewsPage.com, is built by copying and pasting news
articles in the web site, newspage.com, individually, topic
by topic. The text collection was previously used for
evaluating performances of text classifiers which decide
topics of novice texts, automatically. Currently, we use the
text collection to extract words by indexing individual
texts and manually labeling word with their own
importance level to its belonging text. The test data which
is used in this experiment consists of the four collections
of words which are labeled with one of the three
importance levels, exclusively; in each topic, 125 words
are allocated evenly to each importance level, among 375
ones.

Table 1. Distribution of Texts and Labeled Words in
NewsPage.com

Category #Texts
#Training
Words

#Test
Words

Business
Health
Internet
Sports

500
500
500
500

300
300
300
300

75
75
75
75

Total 2,000 1,200 300

Let us mention the process of doing the empirical
validations on the topics from NewsPage.com. Words are
extracted from individual texts, and labeled manually by
voting the decisions of three subjects. We select 125 words
at random in each importance level; we obtain 375 words
with their completely balanced distribution over the three
importance levels, in each topic. The set of 375 words is
divided into the two sets: 300 words are allocated to the
training set, and the others, 75 words, are allocated to the
test set, as shown in Table 1. The words are encoded into
50 dimensional numerical vectors for evaluating the
traditional version, and 50 sized graphs which consists of
50 edges, for evaluating the proposed version.

In Figure 6, we illustrate the results from applying the
two versions of KNN to the index optimization on 75 test
words in each topic. The y-axis in Figure 6 indicates the
accuracy of classifying the 75 test words into one of the
three importance levels. The gray bars and the black bars
indicate the performances of the traditional version and
the proposed version, respectively. The x-axis indicates
the list of topics from NewsPage.com and the average
over them. As shown in Figure 1, the proposed version of
KNN works better than the traditional one over the four
topics.

Fig. 6. Results from Evaluating NV and Graph based KNN in

Topics of NewsPage.com

Let us discuss the results from comparing the two

versions with each other in performing the index
optimizations on the topics from NewsPage.com. The both
versions of KNN works best in the topic, ‘Business’. In
average, the traditional version has its classification
accuracy below 0.3, while the proposed version does it
above the value. Because depending on individual text as
well as topic, same word may be labeled differently, the
classification performances of the both versions is not
high; stay below 0.5. However, the significance of this
experiment is that the proposed version works relatively
better.

Graph based KNN for Optimizing Index of News Articles

60

4.2. 20NewsGroups
This section is concerned with the experiments for

evaluating the both versions as the index optimizations in
the topics from 20NewsGroups. The process of doing the
experiments to each topic is the same to that of
experiments which was covered in Section 4.1. The
proposed of KNN obtains the three wins among the four
topics; it works slightly better than traditional one, on
average.

In Table 2, we illustrate the distribution of the number
of texts and labeled words over the four representative
topics within the scientific domain in 20NewsGroups. The
text collection, 20NewsGroups, actually consists of the 20
topics; we select the four topics under its parent topic,
‘Science’ among them. We obtain 375 labeled words,
keeping the completely balanced distributions over the
three importance levels in each topic. Among them, 300
words are used as training words, and 75 words are used
as test words for evaluating the both versions. The two
text collections which are used in the experiments of this
research consist of texts which are labeled with only one
category, exclusively, but the text collection, Reuter21578,
which has been used most popularly for evaluating text
classification algorithms, consists of texts which are
labeled with more than one.

Table 2. Distribution of Texts and Labeled Words in Four
Representative Topics of 20NewsGroups

Category #Texts
#Training
Words

#Test
Words

Electro
Medicine
Script
Space

1,000
1,000
1,000
1,000

300
300
300
300

75
75
75
75

Total 4,000 1,200 300

The process of doing the experiment in each category is

the same to identical to that of the experiment in Section
4.1. The words are extracted from texts in the selected
topics of 20NewsGroups, and they are labeled by voting
the decisions of three subjects. We select 125 words in
each importance level at random, so that the completely
balanced distribution is maintained. As shown in Table 2,
the set of labeled words is divided identically to the case
in the previous experiment. The words are encoded into
numerical vectors and graphs with the size which is
identical to the case of the previous experiment.

Figure 7 presents the results from applying the two
versions of KNN to the index optimization on words from
the four topics of 20NewsGroups. The result framework in
Figure 2 is identical to that in Figure 7. The differences
from the results which are shown in Figure 7 are the listed

four topics and the accuracy values of the two versions.
The gray bar and the black bar in each topic indicate the
accuracies of the traditional and proposed versions,
respectively. Even if the proposed version is lost in the
topic, ‘Electro’, it works slightly better than the traditional
one, on average.

Fig. 7. Results from Evaluating NV and Graph based KNN in

Topics of 20NewsGroup

Let us discuss the results from the experiments which is

shown in Figure 7. The both versions of KNN works best
in the topic, ‘Med’. The accuracies of the both versions are
between 0.34 and 0.36 on average; the proposed version
has its slightly higher accuracy. However, the proposed
version wins outstandingly over the traditional one, in
three of the four topics. Finally, with the view of
tournaments of the two versions, it is concluded that the
proposed version wins by three to one.

V. CONCLUSION

 Let us consider the significances of this research. The
importance of words is divided into the three levels and
the index optimization is viewed as a classification. Words
are encoded into graphs as the alternative representations
to numerical vectors and the similarity measures between
them is defined. The KNN is modified into the graph
based version which receives a graph as its input data,
instead of a numerical vector. The modified version of
KNN is applied to the task, index optimization.

Let us mention the remaining tasks for doing the further
research. We need to observe the performances of the
modified version for optimizing index of texts in specific
domains: finance, law, engineering, and medicine. We
define more operations on graphs and characterize them
mathematically, based on the graph theory. We modify
other machine learning algorithms such as Naïve Bayes,
Support Vector Machine, Decision Tree, and Neural
Networks, like so. We may consider implementing the
graph based deep learning algorithms which recently
became the popular trends of machine learning algorithms.

Journal of Multimedia and Information System VOL. 3, NO. 3, September 2016(pp. 53-62): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2016.3.3.53

61

Acknowledgement
This work was supported by 2016 Hongik University
Research Fund.

REFERENCES

[1] T. Jo, “The Implementation of Dynamic Document
Organization using Text Categorization and Text
Clustering,” PhD Dissertation of University of Ottawa,
2006.

[2] N. F. Noy and C. D. Hafner, “State of the Art in
Ontology Design,” AI Magazine, vol. 18, no. 3, 1997.

[3] D. Allemang and J. Hendler, Semantic Web for the
Working Ontologies, Mrgan Kaufmann, 2011.

[4] F. Sebastiani, “Machine Learning in Automated Text
Categorization," ACM Computing Survey, vol. 34, no.
1, pp. 1-47, 2002.

[5] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini
and C. Watkins, “Text Classification with String
Kernels,” Journal of Machine Learning Research, vol.
2, no. 2, pp. 419-444, 2002.

[6] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S.
Noble, “Mismatch String Kernels for Discriminative
Protein Classification,” Bioinformatics, vol. 20, no. 4,
pp. 467-476, 2004.

[7] R. J. Kate and R. J. Mooney, “Using String Kernels for
Learning Semantic Parsers,” in Proceedings of the
21st International Conference on Computational
Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pp. 913-
920, 2006.

[8] T. Jo and D. Cho, “Index based Approach for Text
Categorization,” International Journal of Mathematics
and Computers in Simulation, vol. 2, no. 1, pp. 127-
132, 2008.

[9] T. Jo, “Single Pass Algorithm for Text Clustering by
Encoding Documents into Tables,” Journal of Korea
Multimedia Society, vol. 11, no. 12, pp. 1749-1757,
2008.

[10] T. Jo, “Device and Method for Categorizing
Electronic Document Automatically,” Patent
Document, 10-2009-0041272, 10-1071495, 2011.

[11] T. Jo, “Normalized Table Matching Algorithm as
Approach to Text Categorization,” Soft Computing,
vol. 19, no. 4, pp. 839-849, 2015.

[12] T. Jo, “Inverted Index based Modified Version of K-
Means Algorithm for Text Clustering,” Journal of
Information Processing Systems, vol. 4, no. 2, pp. 67-

76, 2008.

[13] T. Jo, “Representation of Texts into String Vectors
for Text Categorization,” Journal of Computing
Science and Engineering, vol. 4, no. 2, pp. 110-127,
2010.

[14] T. Jo, “NTSO (Neural Text Self Organizer): A New
Neural Network for Text Clustering,” Journal of
Network Technology, vol. 1, no. 1, pp. 31-43, 2010.

[15] T. Jo, “NTC (Neural Text Categorizer): Neural
Network for Text Categorization,” International
Journal of Information Studies, vol. 2, no. 2, pp83-96,
2010.

Authors

Taeho Jo is currently working for
Hongik University as a faculty member.
He received his Bachelor degree from
Korea University in 1994, his Master
degree from Pohang University of
Science and Technology in 1997, and his
PhD degree from University of Ottawa in
2006. His research area spans mainly

over text mining, neural networks, machine learning, and
information retrieval. He has the four years experience of
working for industrial organizations and ten years experience of
working for academic ones. In 2016, he was awarded in the
biography dictionary, "Marquis Who's Who in the World".

