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1. Introduction

The purpose of this paper is to introduce weakening-free fuzzy 

logics assuming weak forms of associativity but not associativity 

(of multiplicative conjunction &). For this, recall first historical 

facts associated with fuzzy logics based on aggregation operators 

generalizing t-norms. Metcalfe (and Montagna) (2004; 2007) 

introduced the weakening-free fuzzy logics UL (Uninorm logic), 

IUL (Involutive uninorm logic), UML (Uninorm mingle logic), 

and IUML (Involutive uninorm mingle logic) as substructural 

fuzzy logics, and established standard completeness, i.e., 

completeness with respect to (w.r.t.) the corresponding unit 

interval structures, for them (except IUL). These logics are based 

on uninorms, which are functions introduced by Yager and 

Rybalov (1996) as a generalization of t-norms where the identity 

can lie anywhere in [0, 1]. Before introducing uninorms, Yager 

introduced a generalization of uninorms, a variant of the concept 

of uninorm obtained by removing the associativity condition in its 

definition: in Yager (1994a; 1994b), he introduced a class of 

MICA (Monotonic Identity Commutative Aggregation) operators 

together with the mention that MICA operators constitute the 

basic operators needed for aggregation in fuzzy system modeling. 

Yang (2015) recently defined micanorms as binary MICA 

operations, and introduced several weakening-free fuzzy logics 

based on micanorms.

The weakening-free fuzzy systems introduced in Yang (2015) 

are non-associative fuzzy logics in that they lack associativity (of 
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&). In this paper we investigates weakening-free fuzzy logics with 

three weak forms of associativity (of &). Let us call such logics 

weakening-free weakly associative fuzzy logics. The reason to 

investigate these logics is related to the followings: as Metcalfe 

and Montagna mentioned in Metcalfe & Montagna (2007), 

establishing standard completeness of fuzzy logics proves to be 

more challenging. One method introduced in Jenei & Montagna 

(2002) for MTL and extended to related logics in Esteva et al. 

(2002) (calling it Jenei and Montagna's method, briefly JM 

method), consists of showing that countable linearly ordered 

algebras of a given variety can be embedded into linearly and 

densely ordered members of the same variety, which can in turn 

be embedded into algebras with lattice reduct [0, 1]. This method 

works for t-norm (based) logics but seems to fail with 

associativity for UL. Thus, it does not appear to work in general 

for weakening-free associative logics based on uninorms such as 

UL. Because of this negative fact, Metcalfe and Montagna (2007) 

introduced a new approach for proving standard completeness of 

uninorm logics.1)

One interesting point to state is that JM method still works for 

non-associative logics (see Yang (2015)). Then, since we can 

introduce at least three weak forms of associativity (see Section 

1) This approach consists of the following two steps: 1. after extending logics 

with density rule, showing that such systems are complete w.r.t. linearly and 

densely ordered algebras, and for particular extensions are complete w.r.t. 

those algebras with lattice reduct [0, 1]; 2. giving a syntactic elimination of 

density rule (as a rule of the corresponding hypersequent calculus), i.e., 

showing that if φ is derivable in a uninorm logic L extended with density 

rule, then it is also derivable in L.
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2), it raises the question as to whether the method also works for 

weakening-free weakly associative fuzzy logics or not, i.e., 

Does JM method work for (all, some, or none of) 

weakening-free micanorm logics with weak forms of associativity? 

The answer is that it works for logics with the weak 

t-associativity, the weakest form of weak associativity introduced 

in Section 2, but does not for logics with other stronger forms of 

weak associativity introduced in Section 2. We shall verify this 

by providing standard completeness using construction in the style 

of Jenei-Montagna.

To gain our end, in Section 2 we introduce the wta-monoidal 

uninorm logic WAtMUL, which is intended to cope with the 

tautologies of left-continuous conjunctive wta-uninorms and their 

residua (introduced in Section 4), and its axiomatic extensions 

obtained by adding other stronger forms of weak associativity as 

weakening-free weakly associative fuzzy logics. In Section 3, we 

then define the algebraic structures corresponding to the systems, 

and provide algebraic completeness results for them. After 

introducing micanorms satisfying the corresponding weak forms of 

associativity in Section 4, in Section 5 we establish standard 

completeness for the system WAtMUL and the other systems but 

with an additional axiom using JM method.

The systems, which will be investigated here, are all 

weakening-free. Thus, for simplicity, we henceforth call 

weakening-free fuzzy logics just fuzzy logics, if the context is 
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clear. Also, for convenience, we shall adopt the notations and 

terminology similar to those in Cintula (2006), Esteva et al. 

(2002), and Yang (2009; 2015), and assume familiarity with them 

(together with results found therein).

2. Syntax

We base weakly associative fuzzy logics on a countable 

propositional language with formulas Fm built inductively as usual 

from a set of propositional variables VAR, binary connectives →, 

&, ∧, ∨, and constants T, F, f, t. Further definable connectives 

are:

df1. ￢φ := φ → f,

df2. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ).

We may define t as f → f. We moreover define φn
t as φt & 

… & φt, n factors, where φt := φ ∧ t. For the rest of this 

paper, we use the customary notations and terminology, and the 

axiom systems to provide a consequence relation.

We start with the following axiom schemes and rules for the 

weak t-associative monoidal uninorm logic WAtMUL, the basic 

weakly associative fuzzy logic defined here.

Definition 2.1 WAtMUL consists of the following axiom 

schemes and rules:

A1. φ → φ  (self-implication, SI)
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A2. (φ ∧ ψ) → φ,  (φ ∧ ψ) → ψ  (∧-elimination, ∧-E)

A3. ((φ→ψ)∧(φ→χ)) → (φ→(ψ∧χ))  (∧-introduction, ∧-I)

A4. φ → (φ ∨ ψ),  ψ → (φ ∨ ψ)  (∨-introduction, ∨-I)

A5. ((φ→χ)∧(ψ→χ)) → ((φ∨ψ)→χ)  (∨-elimination, ∨-E)

A6. F → φ  (ex falsum quodlibet, EF)

A7. (φ & ψ) → (ψ & φ)  (&-commutativity, &-C)

A8. φ ↔ (t → φ)  (push and pop, PP)

A9. φ → (ψ → (ψ & φ))  (&-adjunction, &-Adj)

A10. (φt & ψt) → (φ ∧ ψ)  (&∧)

A11. (ψ & (φ & (φ → (ψ → χ)))) → χ  (residuation, Res')

A12. (φ → ((φ & (φ → ψ)) & (ψ → χ))) → (φ → χ)  (T')

A13. ((δ&ε)→(δ&(ε&(φ→ψ)t)))∨(δ'→(ε'→((ε'&δ')&(ψ→φ)t))) 

(PL) 

A14. (φt&(ψt&χt))↔((φt&ψt)&χt)  (weak t-associativity, wASt)

φ → ψ, φ ⊢ ψ (modus ponens, mp)

φ ⊢ φt  (adju) 

φ ⊢ (δ & ε) → (δ & (ε & φ)) (α) 

φ ⊢ δ → (ε → ((ε & δ) & φ)) (β).

Definition 2.2 A logic is an axiomatic extension (extension for 

short) of an arbitrary logic L if and only if (iff) it results from L

by adding axiom schemes. In particular, the following are weakly 

associative fuzzy logics that extend WAtMUL:

• t-associative (ta-) monoidal uninorm logic AtMUL is 

WAtMUL plus 

(ASt) (φ & (ψ & χ))t ↔ ((φ & ψ) & χ)t;  

(REt) (φ → (ψ → χ))t ↔ ((φ & ψ) → χ)t;
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(SFt) (φ → ψ)t → ((ψ → χ) → (φ → χ));  

(PFt) (ψ → χ)t → ((φ → ψ) → (φ → χ)); and  

(MTt) (φ → ψ)t → ((φ & χ) → (ψ & χ)).

• (Yang (2009) Strong ta-monoidal uninorm logic SAtMUL is 

AtMUL plus 

(sASt) (φt & (ψ & χ)) ↔ ((φt & ψ) & χ).2)

An easy computation shows the following.

Proposition 2.3 WAtMUL proves:

(1) φ → ψ ⊢ (φ & χ) → (ψ & χ)  (monotonicity, mt)

(2) φ → (ψ → χ) ⊢ ψ → (φ → χ)  (permutation, pm)

(3) φ → ψ ⊢ ￢ψ → ￢φ  (contraposition, cp)

(4) φ → ￢￢φ  (double negation introduction, DNI)

(5) ￢(φ ∨ ψ) ↔ (￢φ ∧ ￢ψ)  (de MorganI, DM1)

(6) (￢φ ∨ ￢ψ) ↔ ￢(φ ∧ ψ)  (de MorganII, DM2)

(7) (φ∧(ψ∨χ)) ↔ ((φ∧ψ) ∨ (φ∧χ))  (distributivity, ∧∨-D)

(8) (φ&(ψ∨χ)) ↔ ((φ&ψ)∨(φ&χ))  (&∨-distributivity, &∨-D)

(9) (φ&(ψ∧χ)) ↔ ((φ&ψ)∧(φ&χ))  (&∧-distributivity, &∧-D)

(10) (φt & φt) → φt  (t-square decreasing, SDEt)

(11) (φt → (ψt → χ))t ↔ ((φt & ψt) → χ)t  (wREt)

(12) (φ → ψ)t → ((ψ → χ)t → (φt → χt))  (wSFt)

(13) (ψ → χ)t → ((φ → ψ)t → (φt → χt))  (wPFt)

(14) (φ → ψ)t → ((φt & χt) → (ψt & χt))  (wMTt)

2) Here the “t-associative” means that this logic satisfies the condition (d') for 

ta-uninorm in Definition 4.2 (iii) below and the “At”” in each naming denote 

this fact. The “W” and “S” in WAtMUL, and SAtMUL mean “weaker than 

t-associativity” and “stronger than t-associativity”, respectively.
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(15) (φ & t) ↔ φ

(16) (φ → ψ) ∨ (ψ → φ)  (PL2)

(17) (φ → ψ)t ∨ (ψ → φ)t  (PLt)

(18) (φ ∧ t) → (t ∨ ψ)

(19) ((φ → F) & φ) → ψ

(20) (φ∧(φ→f)) → (ψ∨(ψ→f)), i.e., (φ ∧ ￢φ) → (ψ ∨ ￢ψ).

For easy reference we let Ls be a set of weakly associative 

fuzzy logics defined previously.

Definition 2.4 Ls = {WAtMUL, AtMUL, SAtMUL}.

In L (∈ Ls), f can be defined as ￢t and vice versa.

A theory over L (∈ Ls) is a set T of formulas. A proof in a 

sequence of formulas whose each member is either an axiom of 

L or a member of T or follows from some preceding members of 

the sequence using a rule of L. T ⊢ φ, more exactly T ⊢L φ, 

means that φ is provable in T w.r.t. L, i.e., there is an L-proof 

of φ in T. A theory T is inconsistent if T ⊢ F; otherwise it is 

consistent.

The deduction theorem for L is as follows:

Proposition 2.5 Let T be a theory, and φ, ψ be formulas. 

(i) (Cintula et al. (2013; 2015)) T ∪ {φ} ⊢L ψ iff T ⊢L γ(φ) 

→ ψ for some γ ∈ Π(bDT*).3)

(ii) (Yang (2009)) For L ∈ {AtMUL, SAtMUL}, T ∪ {φ} ⊢L

3) For γ and Π(bDT*), see Cintula et al. (2013; 2015) and Yang (2015).
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ψ iff there is n such that T ⊢L φn
t → ψ.

For convenience, “￢”, “∧”, “∨”, and “→” are used 

ambiguously as propositional connectives and as algebraic 

operators, but context should clarify their meanings.

Remark 2.5 MICAL and UL are the systems as follows:

• (Yang (2015)) MICAL is WAtMUL minus A14.

• (Metcalfe & Montagna (2007)) UL is MICAL plus

(PF) (ψ → χ) → ((φ → ψ) → (φ → χ)); and

(RE) (φ → (ψ → χ)) ↔ ((φ & ψ) → χ).

Note that UL proves (AS) (φ & (ψ & χ)) ↔ ((φ & ψ) & χ). 

Thus, WAtMUL, AtMUL, and SAtMUL can be regarded as 

weakly associative generalizations of UL.

3. Semantics

Suitable algebraic structures for L (∈ Ls) are obtained as 

varieties of residuated lattice-ordered unital groupoids (briefly, 

rlu-groupoids) in the sense of Galatos et al. (2007).

Definition 3.1 (Yang (2015)) (i) A pointed bounded 

commutative rlu-groupoid is a structure A = (A, ⊤, ⊥, t, f, ∧, 

∨, *, →) such that:

(Ⅰ) (A, ⊤, ⊥, ∧, ∨) is a bounded lattice with top element 

⊤ and bottom element ⊥.
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(Ⅱ) (A, *, t) is a commutative groupoid with unit.

(Ⅲ) y ≤ x→z iff x * y ≤ z, for all x, y, z ∈ A 

(residuation).

(ii) An MICAL-algebra is a pointed bounded commutative 

rlu-groupoid satisfying: for all x, y, z, w, z', w' ∈ A,

(PLA) t ≤ ((z*w)→(z*(w*(x→y)t)))∨(z'→(w'→((w'*z')*(y→x)t))).

Definition 3.2 (L-algebras) A WAtMUL-algebra is an 

MICAL-algebra satisfying: (wASt
A) xt * (yt * zt) = (xt * yt) * zt, 

for all x, y, z ∈ A; an AtMUL-algebra is an MICAL-algebra 

satisfying: for all x, y, z ∈ A, (ASt
A) (x * (y * z))t = ((x * y) 

* z)t, (REt
A) (x → (y → z))t = ((x * y) → z)t, (SFt

A) (x → y)t

≤ ((y → z) → (x → z)), (PFt
A) (y → z)t ≤ ((x → y) → (x 

→ z)), and (MTt
A) (x → y)t ≤ ((x * z) → (y * z)); an 

SAtMUL-algebra is an AtMUL-algebra satisfying: (sASt
A) xt * (y 

* z) = (xt * y) * z, for all x, y, z ∈ A. We call all these 

algebras L-algebras.

A commutative unital groupoid (A, *, t) satisfying 

(associativity) x * (y * z) = (x * y) * z on [0, 1] is a uninorm

and this is a t-norm in case t = ⊤.

By xn, we denote x * … * x, n factors. Using → and f we 

can define t as f → f, and ￢ as in (df1).

For L (∈ Ls), L-algebra (defined in Definition 3.2) is said to 

be linearly ordered if the ordering of its algebra is linear, i.e., x 

≤ y or y ≤ x (equivalently, x ∧ y = x or x ∧ y = y) for 

each pair x, y.
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Definition 3.3 (Evaluation) Let A be an algebra. An 

A-evaluation is a function v : FOR → A satisfying: v(φ → ψ) = 

v(φ) → v(ψ), v(φ ∧ ψ) = v(φ) ∧ v(ψ), v(φ ∨ ψ) = v(φ) ∨

v(ψ), v(φ & ψ) = v(φ) * v(ψ), v(T) = ⊤, v(F) = ⊥, v(f) = f, 

(and hence v(￢φ) = ￢v(φ) and v(t) = t).

Definition 3.4 (Cintula (2006)) Let A be an L-algebra, T be a 

theory, φ be a formula, and K be a class of L-algebras.

(i) (Tautology) φ is a t-tautology in A, briefly an A-tautology (or 

A-valid), if v(φ) ≥ t for each A-evaluation v.

(ii) (Model) An A-evaluation v is an A-model of T if v(φ) ≥ t 

for each φ ∈ T. We denote the class of A-models of T, by 

Mod(T, A).

(iii) (Semantic consequence) φ is a semantic consequence of T 

w.r.t. K, denoting by T ⊨K φ, if Mod(T, A) = Mod(T ∪ {φ}, 

A) for each A ∈ K.

Definition 3.5 (L-algebra, Cintula (2006)) Let A, T, and φ be 

as in Definition 3.4. A is an L-algebra iff, whenever φ is 

L-provable in T (i.e. T ⊢L φ, L an L logic), it is a semantic 

consequence of T w.r.t. the set {A} (i.e. T⊨  φ), A a 

corresponding L-algebra). By MOD(l)(L), we denote the class of 

(linearly ordered) L-algebras. Finally, we write T ⊨(l)
L φ in place 

of T ⊨MOD
(l)

(L) φ.

Theorem 3.6 (Strong completeness) Let T be a theory, and φ 

be  a formula. T ⊢L φ iff T ⊨L φ iff T ⊨l
L φ.
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Proof: We obtain this theorem as a corollary of Theorem 3.1.8 

in Cintula & Noguera (2011). □

4. Weakly associative uninorms and their residua

In this section we define standard L-algebras based on the real 

unit interval [0, 1] and weakly associative (wa-) uninorms. Using 

1, 0, ℯ, and ∂, we shall express ⊤, ⊥, identity t, and any f, 

respectively, on [0, 1]. 

Definition 4.1 An L-algebra is standard iff its lattice reduct is 

[0, 1].

In standard L-algebras the operator * is a wta-uninorm defined 

here.

Definition 4.2 (i) (micanorm, Yang (2015)) An micanorm is a 

function ○ : [0, 1]2 → [0, 1] such that for some ℯ ∈ [0, 1] 

and for all x, y, z ∈ [0, 1]:

(a) x ○ y = y ○ x (commutativity),

(b) ℯ ○ x = x (identity),

(c) x ≤ y implies x ○ z ≤ y ○ z (monotonicity).

(ii) (wta-uninorm) A wta-uninorm is an micanorm satisfying: for 

all x, y, z ∈ [0, 1],

(d) x,y,z ≤ ℯ implies x○(y○z) = (x○y)○z 

(wt-associativity).

(iii) (ta-uninorm) A ta-uninorm is an micanorm satisfying: for all 
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x, y, z ∈ [0, 1],

(d') x○(y○z), (x○y)○z ≤ ℯ implies x○(y○z) = (x○y)○z 

(t-associativity).

(iv) (sta-uninorm) An sta-uninorm is an micanorm satisfying: for 

all x, y, z ∈ [0, 1],

(d'') x ≤ ℯ implies x○(y○z) = (x○y)○z (st-associativity).

By weakly associative (wa-) uninorm(s), we ambiguously denote 

these wta-uninorms collectively if we need not distinguish them.

A wa-uninorm is called conjunctive if 0 ○ 1 = 0, and 

disjunctive if 0 ○ 1 = 1. Associative micanorm is a uninorm; 

and uninorm satisfying that ℯ = 1 is a t-norm.

The left-continuity property of conjunctive wa-uninorms is 

important in the sense that it gives rise to a residuated 

implication and so plays an important role in standard 

completeness proof of Ls as in t-norm and uninorm based logics 

such as MTL, UL, etc., (cf. see Esteva & Godo (2001), Esteva et 

al. (2002), Jenei & Montagna (2002), and Metcalfe & Montagna 

(2007)). ○ is said to be residuated if there is ⇒ : [0, 1]2 → [0, 

1] satisfying (residuation) on [0, 1]. Then, given a wa-uninorm 

○, residuated implication (briefly R-implication)} ⇒ determined 

by ○ is defined as x ⇒ y := sup{z ∈ [0, 1]: x ○ z ≤ y} for 

all x, y ∈ [0, 1]. Then, as in uninorms, we can show that for 

any wa-uninorm ○, ○ and its R-implication ⇒ form a 

residuated pair iff ○ is conjunctive and left-continuous in both 

arguments (cf. see Proposition 5.4.2 in Gottbald (2001)).

It is clear that the operation * of any WAtMUL-algebra on [0, 
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1] is a conjunctive wta-uninorm with identity t and residuum ⇒; 

conversely any residuated wta-uninorm gives rise to a 

WAtMUL-algebra on [0, 1] as follows:

Proposition 4.3 If ○ is a wta-uninorm with residuum ⇒ and 

identity ℯ, then for any ∂ ∈ [0, 1], ([0, 1], 1, 0, ℯ, ∂, min, 

max, ○, ⇒) is a WAtMUL-algebra on [0, 1].

Proof: It is clear that ([0, 1], 1, 0, ℯ, ∂, min, max, ○, ⇒) 

is an SL-algebra. Furthermore, since ○ is a wta-uninorm, it 

satisfies (wt-associativity). We prove that it satisfies (PLA). For x, 

y ∈ [0, 1], if x ≤ y, then ℯ ≤ x ⇒ y and so ℯ = (x ⇒ y)

ℯ. Furthermore, using (monotonicity) and (residuation), ℯ ≤ w 

⇒ (w ○ (x ⇒ y)ℯ), and so ℯ ≤ (z ○ w) ⇒ (z ○ (w ○ (x 

⇒ y)ℯ)); therefore, ℯ ≤ ((z ○ w) ⇒ (z ○ (w ○ (x ⇒ y)

ℯ))) ∨ (z' ⇒ (w' ⇒ ((w' ○ z') ○ (y ⇒ x)ℯ))). Let y ≤ x. 

Similarly, we can obtain ℯ ≤ z' ⇒ (w' ⇒ ((w' ○ z') ○ (y ⇒

x)ℯ)); therefore, ℯ ≤ ((z ○ w) ⇒ (z ○ (w ○ (x ⇒ y)ℯ))) 

∨ (z' ⇒ (w' ⇒ ((w' ○ z') ○ (y ⇒ x)ℯ))). This ensures that 

this algebra satisfies (PLA). □

Similarly we can show that: if ○ is a ta-uninorm (sta-uninorm 

resp) with residuum ⇒ and identity ℯ, then for any ∂ ∈ [0, 

1], ([0, 1], 1, 0, ℯ, ∂, min, max, ○, ⇒) is an AtMUL-algebra 

(SAtMUL-algebra resp) on [0, 1]. 
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5. Standard completeness

In this section we provide standard completeness results for Ls 

(extended with (R-C) ((φ & ψ) → (φ ∧ ψ)) ∨ ((φ ∨ ψ) →

(φ & ψ)) w.r.t. AtMUL and SAtMUL). We first show that finite 

or countable linearly ordered WAtMUL-algebras are embeddable 

into a standard algebra. (For convenience, we add less than 

relation symbol to such algebras.)

Proposition 5.1 For every finite or countable linearly ordered 

WAtMUL-algebra A = (A, ≤A, ⊤, ⊥, t, f, ∧, ∨, *, ⇒), there 

is a countable ordered set X, a binary operation ○, and a map h 

from A into X such that the following conditions hold:

(I) X is densely ordered, and has a maximum Max, a minimum 

Min, and special elements ℯ, ∂.

(II) (X, ○, ≼, ℯ) is a linearly ordered monotonic commutative 

wta-groupoid with unit.

(III) ○ is conjunctive and left-continuous w.r.t. the order topology 

on (X, ≼).

(IV) h is an embedding of the structure (A, ≤A, ⊤, ⊥, t, f, ∧, 

∨, *) into (X, ≼, Max, Min, ℯ, ∂, min, max, ○), and for all 

m, n ∈ A, h(m ⇒ n) is the residuum of h(m) and h(n) in (X, 

≼, Max, Min, ℯ, ∂, max, min, ○).

Proof: For convenience, we assume A as a subset of Q ∩ [0, 

1] with finite or countable elements, where 0 and 1 are least and 

greatest elements and some ℯ and any ∂ are special elements, 
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each of which corresponds to ⊤, ⊥, t, and f, respectively. Let

X = {(m, x): m ∈ A ∖ {0 (= ⊥)} and x ∈ Q ∩ (0, m]} 

∪ {(0, 0)}; and

for (m, x), (n, y) ∈ X,

(m, x) � (n, y) iff either m <A n, or m =A n and x ≤ y.

For convenience, we henceforth drop the index A in ≤A and 

=A, if we need not distinguish them. But context should clarify 

what we mean.

Define for (m, x), (n, y) ∈ X:

(m,x) ○ (n,y) = max{(m,x), (n,y)} if m*n = m∨n, m ≠ n, and

                             (m, x) � ℯ or (n, y) � ℯ;

              min{(m,x), (n,y)} if m * n = m ∧ z, and

                             (m, x) � ℯ or (n, y) � ℯ;

              (m * n, m * n)  otherwise.

Here, we just prove that ○ satisfies the wt-associativity of (II).

wt-Associativity: we assume that (l, x), (m, y), (n, z) ≼ ℯ

and show that (l, x) ○ ((m, y) ○ (n, z)) = ((l, x) ○ (m, y)) 

○ (n, z) (wASt
A). Without further mention, we will use the fact 

that * is weakly t-associative. We distinguish several cases:

● Case (i). l * (m * n) = ∨(l, m, n). Since l * (m * n) ≤
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ℯ, l = m = n ≤ ℯ. Then both sides of (wASt
A) are equal to 

min{(l, x), (m, y), (n, z)}.

● Case (ii). l * (m * n) = ∧(l, m, n). Since l * (m * n), (l * 

m) * n ≤ ℯ, both sides of (wASt
A) are equal to min{(l, x), (m, 

y), (n, z)}.

● Case (iii). l * (m * n) ≠ ∨(l, m, n), ∧(l, m, n), and l * 

(m * n) ∈ {l, m, n}. Since l, m, n ≤ ℯ and so l * (m * n) 

≤ l ∧ m ∧ n, this is not the case.

● Case (iv). l * (m * n) ∉ {l, m, n} and either l * (m * n) = 

l ∨ (m * n) = m * n or l * (m * n) = l ∧ (m * n) = m * 

n. The first one is not the case as in Case (iii). Consider the 

second one. This implies that (l, x) ○ ((m, y) ○ (n, z)) = 

min{(l, x), (m, y) ○ (n, z)} = (m, y) ○ (n, z) = (m * n, m * 

n). Thus, both sides of (wASt
A) are equal to (m * n, m * n).

● Case (v). l * (m * n) ∉ {l, m, n} and l * (m * n) ≠ l ∨

(m * n), l ∧ (m * n). Then, we need to consider the case that l 

* (m * n) ≤ ℯ. Then, since l * (m * n) < l ∧ m ∧ n, both 

sides of (wASt
A) are equal to (l * (m * n), l * (m * n)).

Proof of the remaining is almost same as Proposition 2 in 

Yang (2015). □

Proposition 5.2 Every countable linearly ordered 
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WAtMUL-algebra can be embedded into a standard algebra.

Proof: Its proof is almost the same as Proposition 3 in Yang 

(2015). □

Theorem 5.3 (Strong standard completeness) For WAtMUL, the 

following are equivalent:

(1) T ⊢WAtMUL φ.

(2) For every standard WAtMUL-algebra and evaluation v, if v(ψ) 

≥ ℯ for all ψ ∈ T, then v(φ) ≥ ℯ.

Proof: (1) to (2) follows from definition. We prove (2) to (1). 

Let φ be a formula such that T ⊬WAtMUL φ, A be a linearly 

ordered WAtMUL-algebra, and v be an evaluation in A such that 

v(ψ) ≥ t for all ψ ∈ T and v(φ) < t. Let h' be the embedding 

of A into the standard WAtMUL-algebra as in proof of 

Proposition 2 in Yang (2015). Then h' ○ v is an evaluation into 

the standard WAtMUL-algebra such that h' ○ v(ψ) ≥ ℯ and 

yet h' ○ v(φ) < ℯ. □

Theorem 5.3 ensures that WAtMUL is complete w.r.t. 

left-continuous conjunctive wta-uninorms.

Remark 5.4 Note that the definitions of ○ and X in the proof 

of Proposition 5.1 fail with (t-associativity) for AtMUL. For 

instance, let l * (m * n) ≠ ∨(l, m, n), ∧(l, m, n), and l * (m 

* n) ∈ {l, m, n}. Consider the case that l * (m * n) = l ∨ (m 
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* n) = l = m * n and m < l < ℯ < n. (l, x) ○ ((m, y) ○ (n, 

z)) = min{(l, x), (m * n, m * n)} = (l, x). But if l * m = m 

and (l, x) < (l, l), then ((l, x) ○ (m, y)) ○ (n, z) = (m * n, m 

* n) (= (l, l)) ≠ (l, x). This implies that this method, as far as 

it still has such definitions, fails not merely for AtMUL but also 

for SAtMUL and UL Therefore, JM method does not appear to 

work for these two weakly associative systems AtMUL and 

SAtMUL.

Notice that, while JM method does not appear to work for UL, 

it still works for MTL, i.e., UL plus (W). Similarly, this method 

may work for some particular extensions of AtMUL and SAtMUL. 

As examples, we consider AtMUL and SAtMUL, respectively, 

extended with (R-C) above. 

Let AtMULr (SAtMULr resp) be AtMUL (SAtMUL resp) plus 

(R-C). We define an AtMULr-algebra (an SAtMULr-algebra resp) 

to be an AtMUL-algebra (an SAtMUL-algebra resp) satisfying: 

(reinforcement without compensation, rc) for all x, y ∈ A,

t ≤ ((x * y) ⇒ (x ∧ y)) ∨ ((x ∨ y) ⇒ (x * y)); and 

an rc-wa-uninorm to be a wa-uninorm satisfying (rc) on [0, 1]. 

Notice that in linearly ordered algebras using (rc) we obtain that: 

(rc') for all x, y ∈ A, 

x * y ≤ min{x, y} or max{x, y} ≤ x * y. 
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Then, in an analogy to the above, we can show the following.

Theorem 5.5 (Strong standard completeness) For L ∈

{AtMULr, SAtMULr}, the following are equivalent:

(1) T ⊢L φ.

(2) For every standard L-algebra and evaluation v, if v(ψ) ≥

ℯ for all ψ ∈ T, then v(φ) ≥ ℯ.

Proof: First define: for (m, x), (n, y) ∈ X,

(m,x) ○ (n,y) = max{(m,x), (n,y)} if m * n =A m ∨ n and

                               (m, x) ≻ ℯ or (n, y) ≻ ℯ;

              min{(m,x), (n,y)} if m * n = m ∧ z, and

                               (m, x) � ℯ or (n, y) � ℯ;

              (m * n, m * n)   otherwise.

For AtMULr (SAtMULr resp), we prove (rc) of ○ and 

t-associativity (st-associativity resp) as follows:

○-rc: we instead prove that for all (m, x), (n, y) ∈ X, (m, x) 

○ (n, y) ≼ min{(m, x), (n, y)} or max{(m, x), (n, y)} ≼ (m, 

x) ○ (n, y), i.e., (rc') of ○ (○-rc'). Note that by (rc') of *, m 

* n ≤ m ∧ n or m ∨ n ≤ m * n. If m * n = m ∨ n, and 

(m, x) ≻ ℯ or (n, y) ≻ ℯ, then (m, x) ○ (n, y) = max{(m, 

x), (n, y)}. If m * n = m ∧ n, and (m, x) ≼ ℯ or (n, y) ≼

ℯ, then (m, x) ○ (n, y) = min{(m, x), (n, y)}. Otherwise, by 

(rc') of *, (m, x) ○ (n, y) = (m * n, m * n) ≺ min{(m, x), (n, 
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y)} or (m, x) ○ (n, y) = (m * n, m * n) ≻ max{(m, x), (n, 

y)}.

t-Associativity for AtMULr: We assume that (l, x) ○ ((m, y) 

○ (n, z)), ((l, x) ○ (m, y)) ○ (n, z) ≼ ℯ. We need to show 

that (l, x) ○ ((m, y) ○ (n, z)) = ((l, x) ○ (m, y)) ○ (n, z) 

(ASt
A). Its proof is analogous to that of (wt-associativity) in 

Proposition 5.1.

st-Associativity for SAtMULr: We assume that (l, x) ≼ ℯ and 

show that (l, x) ○ ((m, y) ○ (n, z)) = ((l, x) ○ (m, y)) ○ (n, 

z) (sASt
A). Without further mention, we will use the fact that * is 

strong t-associative. We distinguish several cases:

● Case (i). l * (m * n) = ∨(l, m, n).

⋄ Subcase (i-a). m * n = m ∨ n.

(a-1) (l, x) ≻ ℯ or (m, y) ○ (n, z) ≻ ℯ. Since (l, x) ≼

ℯ, (m, y) ○ (n, z) ≻ ℯ and so (m, y) ≻ ℯ or (n, z) ≻ ℯ. 

Then, both sides of (sASt
A) are equal to max{(l, x), (m, y), (n, 

z)}.

(a-2) (l, x), (m, y) ○ (n, z) ≼ ℯ. This implies l = m = n 

≤ ℯ. Thus both sides of (sASt
A) are equal to min{(l, x), (m, y), 

(n, z)}. 

⋄ Subcase (i-b). m * n = m ∧ n.

(b-1) (l, x) ≼ ℯ or (m, y) ○ (n, z) ≼ ℯ. If ℯ < m = n, 

then (m, y) ○ (n, z) = max{(m, y), (n, z)} and so both sides of 

(sASt
A) are equal to max{(l, x), (m, y), (n, z)}. Otherwise, i.e., if 
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m ≤ ℯ or n ≤ ℯ, then (m, y) ○ (n, z) = min{(m, y), (n, 

z)} and so both sides of (sASt
A) are equal to min{(l, x), (m, y), 

(n, z)}.

(b-2) (l, x), (m, y) ○ (n, z) ≻ ℯ. This is not the case by 

the supposition. 

⋄ Subcase (i-c). m * n ≠ m ∨ n, m ∧ n. 

This is not the case because (l, x) ≼ ℯ and so (m, y) ○ (n, 

z) ≼ ℯ.

● Case (ii). l * (m * n) = ∧(l, m, n). Its proof is analogous to 

that of Case (i).

● Case (iii). l * (m * n) ≠ ∨(l, m, n), ∧(l, m, n), and l * 

(m * n) ∈ {l, m, n}. This is not the case because ∨(l, m, n) 

≤ l * (m * n) or l * (m * n) ≤ ∧(l, m, n) by (rc) of *.

● Case (iv). l * (m * n) ∉ {l, m, n} and either l * (m * n) = 

l ∨ (m * n) = m * n or l * (m * n) = l ∧ (m * n) = m * 

n. Let the first be the case. Then both sides of (sASt
A) are equal 

to (m * n, m * n) since l, m ∨ n < m * n by (rc) of *. Let 

the second be the case. Then since l ∧ (m * n) = m * n and 

(l, x) ○ ((m, y) ○ (n, z)) = min{(l, x), (m, y) ○ (n, z)} = (m, 

y) ○ (n, z), both sides of (sASt
A) are equal to (m * n, m * n).

● Case (v). l * (m * n) ∉ {l, m, n} and l * (m * n) ≠ l ∨

(m * n), l ∧ (m * n). We need to consider the cases l * (m * 

n) > ℯ and l * (m * n) ≤ ℯ. But the first is not the case 
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since l ≤ ℯ and so l * (m * n) ≤ l ∨ (m * n). If the 

second is the case, since l * (m * n) < ∧(l, m, n), both sides 

of (sASt
A) are equal to (l * (m * n), l * (m * n)).

Proof of the remaining is analogous to that of WAtMUL. □
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부 록 479

약한 결합 원리를 갖는 퍼지 논리

양 은 석

이 글에서 우리는 (곱 연언 &의) 약한 형식의 결합 원리를 갖는 

약화 없는 퍼지 논리를 연구한다. 이를 위하여 먼저 wta-유니놈에 

기반 한 체계 WAtMUL과 이의 두 공리적 확장 체계들을 약화 없

는 약한 결합 원리를 갖는 퍼지 논리로 소개한다. 그리고 각 체계

에 상응하는 대수적 구조를 정의한 후, 이 체계들이 대수적으로 완

전하다는 것을 보인다. 다음으로 제네이-몬테그나 스타일의 구성 

방식을 사용하여 체계 WAtMUL과 추가적 공리를 갖는 두 확장 체

계들이 표준적으로 완전하다는 것을 보인다.

주제분류: 논리학 

주요어: 약화 없는 퍼지 논리, 약한 결합 원리, 대수적 완전성, 

표준 완전성, 유니놈 


