DOI QR코드

DOI QR Code

Accuracy Assessment of Planetary Boundary Layer Height for the WRF Model Using Temporal High Resolution Radio-sonde Observations

시간 고해상도 라디오존데 관측 자료를 이용한 WRF 모델 행성경계층고도 정확도 평가

  • Kang, Misun (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Lim, Yun-Kyu (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Cho, Changbum (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Kyu Rang (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Park, Jun Sang (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Baek-Jo (Applied Meteorology Research Division, National Institute of Meteorological Sciences)
  • 강미선 (국립기상과학원 응용기상연구과) ;
  • 임윤규 (국립기상과학원 응용기상연구과) ;
  • 조창범 (국립기상과학원 응용기상연구과) ;
  • 김규랑 (국립기상과학원 응용기상연구과) ;
  • 박준상 (국립기상과학원 응용기상연구과) ;
  • 김백조 (국립기상과학원 응용기상연구과)
  • Received : 2016.09.29
  • Accepted : 2016.11.15
  • Published : 2016.12.31

Abstract

Understanding limitation of simulation for Planetary Boundary Layer (PBL) height in mesoscale meteorological model is important for accurate meteorological variable and diffusion of air pollution. This study examined the accuracy for simulated PBL heights using two different PBL schemes (MYJ, YSU) in Weather Research and Forecasting (WRF) model during the radiosonde observation period. The simulated PBL height were verified using atmospheric sounding data obtained from radiosonde observations that were conducted during 5 months from August to December 2014 over the Gumi weir in Nakdong river. Four Dimensional Data Assimilation (FDDA) using radiosonde observation data were conducted to reduce error of PBL height in WRF model. The assessment result of PBL height showed that RMSE with YSU scheme were lower than that with MYJ scheme in the day and night time, respectively. Especially, the WRF model with YSU scheme produced lower PBL height than with the MYJ scheme during night time. The YSU scheme showed lower RMSE than the MYJ scheme on sunny, cloudy and rainy day, too. The experiment result of FDDA showed that PBL height error were reduced by FDDA and PBL height at the nudging coefficient of $3.0{\times}10^{-1}$ (YSU_FDDA_2) were similar to observation compared to the nudging coefficient of $3.0{\times}10^{-4}$ (YSU_FDDA_1).

Keywords

References

  1. Benkley, C. W., and L. L. Schulman, 1979: Estimating hourly mixing depths from historical meteorological data. J. Appl. Meteorol., 18, 772-780. https://doi.org/10.1175/1520-0450(1979)018<0772:EHMDFH>2.0.CO;2
  2. Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulation of hurricane Bob (1991) to planetary boundary layer parameterization. Mon. Wea. Rev., 128, 3941-3961. https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2
  3. Bright, D. R., and S. L. Mullen, 2002: The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5. Wea. Forecasting, 17, 99-114. https://doi.org/10.1175/1520-0434(2002)017<0099:TSOTNS>2.0.CO;2
  4. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part : Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  5. Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Technical Memorandum, 104606, 85pp.
  6. Garcia-Diez, M., J. Fernandez, L. Fita, and C. Yague, 2013: Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Quart. J. Roy. Meteor. Soc., 139, 501-514. https://doi.org/10.1002/qj.1976
  7. Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 1481-1496. https://doi.org/10.1002/qj.665
  8. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  9. Hong, S.-Y., and S.-W. Kim, 2008: Stable boundary layer mixing in a vertical diffusion scheme. In 18th Symposium on Boundary Layers and Turbulence B, 16.
  10. Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010:Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 1831-1844. https://doi.org/10.1175/2010JAMC2432.1
  11. Hwang, Y. J., J. C. Ha, Y. H. Kim, K. H. Kim, E. H. Jeon, and D. E. Chang, 2011: Observing system experiments using KLAPS and 3DVAR for the upper-air observations over the south and west sea during ProbeX-2009. Atmosphere, 21, 1-16 (in Korean with English abstract).
  12. Janjic, Z. I., 1990: The step-mountain coordinate: physical package. Mon. Wea. Rev., 118, 1429-1443. https://doi.org/10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2
  13. Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP office note, 437, 61 pp.
  14. Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.
  15. Kang, M., Y.-K. Lim, C. Cho, K. R. Kim, J. S. Park, and B.-J. Kim, 2015: The sensitivity analyses of initial condition and data assimilation for a fog event using the Mesoscale Meteorological Model. J. Korean Earth Sci. Soc., 36, 567-579 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2015.36.6.567
  16. Kim, Y.-K., J.-H. Hong, and B.-I. Jeon, 1994: A study on the distribution of air pollutant concentration according to micrometeorological characteristics. Atmosphere, 3, 31-38 (in Korean with English abstract).
  17. Kwon, B. H., B. Benech, D. Lambert, P. Durand, A. Druilhet, H. Giordani, and S. Planton, 1998: Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment. J. Geophys. Res., 103, 25159-25180. https://doi.org/10.1029/98JC02207
  18. Kwon, B. H., K.-D. Min, and D.-S. Kim, 2001: Development of the atmospheric mixed layer observed in Kyungpook province. J. Korean Meteor. Soc., 37, 31-38 (in Korean with English abstract).
  19. Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterization. Mon. Wea. Rev., 136, 4819-4838. https://doi.org/10.1175/2008MWR2366.1
  20. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612. https://doi.org/10.1175/2009MWR2968.1
  21. Lim, Y. K., S. K. Song, and S. O. Han, 2014: Data assimilation effect of mobile rawinsonde observation using unified model observing system experiment during the summer intensive observation period in 2013. J. Korean Earth Sci. Soc., 35, 215-224 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2014.35.4.215
  22. Lohou, F., B. Campistron, A. Druilhet, P. Foster, and J. P. Pages, 1998: Turbulence and coherent organizations in the atmospheric boundary layer: a radar-aircraft experimental approach. Bound.-Layer Meteor., 86, 147-179. https://doi.org/10.1023/A:1000613232592
  23. Min, K. D., S. H. Kim, K. E. Kim, and B. H. Kwon, 1999:Seasonal and local characteristics of atmospheric mixed layer over Kyungpook province. J. Korean Meteor. Soc., 35, 539-548 (in Korean with English abstract).
  24. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682. https://doi.org/10.1029/97JD00237
  25. Moon, N., S. Kim, and J. Seo, 2011: Sensibility study for PBL Scheme of WRF-CMAQ. J. Korean Soc. Atmos. Environ., 27, 791-804 (in Korean with English abstract). https://doi.org/10.5572/KOSAE.2011.27.6.791
  26. Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 1001-1027. https://doi.org/10.1016/S1352-2310(99)00349-0
  27. Shafran, P. C., N. L. Seaman, and G. A. Gayno, 2000: Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study. J. Appl. Meteorol., 39, 412-426. https://doi.org/10.1175/1520-0450(2000)039<0412:EONPOB>2.0.CO;2
  28. Shin, H. H., and S. Y. Hong, 2011: Intercomparison of planetary boundary-layer parameterizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261-281. https://doi.org/10.1007/s10546-010-9583-z
  29. Stauffer, D. R., and N. L. Seaman, 1990: Use of fourdimensional data assimilation in a limited-area mesoscale model. Part I: experiments with synoptic scale data. Mon. Wea. Rev., 118, 1250-1277. https://doi.org/10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2
  30. Stauffer, D. R., and N. L. Seaman, 1994: On multi-scale four-dimensional data assimilation. J. Appl. Meteorl., 33, 416-434. https://doi.org/10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2
  31. Zhang, D.-L., and W.-Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer. J. Appl. Meteorol., 43, 157-169. https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2