Abstract
There have been many types of development and commercialization efforts for superconducting power applications with the continuous development of High Temperature Superconducting (HTS) conductors. In particular, HTS power cables are going to be commercialized in real power grids. A cryogenic refrigeration system should be used to keep it below 77 K, and its required cooling capacity continuously increases as the unit length of the HTS power cable increases. Among the many kinds of cryogenic refrigerator, a reverse Brayton refrigerator that uses turbo expanders is a promising refrigerator due to its efficiency and reliability. Among the various components in refrigerators, the cryogenic turbo-expander is the most important part for increasing efficiency and assuring reliability. The design of a 300 W class turbo-expander is described in this paper prior to the development of a 10 kW class turbo expander, which is the required capability for the commercialization of a HTS power cable. The impeller shape and rotation speed are determined based on the cycle analysis. The Eigen frequency and harmonic analysis are conducted with gas bearings at cryogenic temperatures to determine the operational stability.