DOI QR코드

DOI QR Code

Adsorption Characteristics of Flue Gas Components on Zeolite 13X and Effects of Impurity

제올라이트 13X에 의한 배가스 성분의 흡착 특성 및 불순물의 영향

  • Suh, Sung-Sup (Department of Chemical Engineering, Hong-Ik University) ;
  • Lee, Ho-Jin (Department of Chemical Engineering, Hong-Ik University)
  • 서성섭 (홍익대학교 화학공학과) ;
  • 이호진 (홍익대학교 화학공학과)
  • Received : 2016.06.07
  • Accepted : 2016.09.06
  • Published : 2016.12.01

Abstract

Most of combustion processess used in industries require recovering or removing flue gas components. Recently a new MBA (moving bed adsorption) process for recovering $CO_2$ using zeolite 13X was developed. In this study, adsorption experiments for carbon dioxide, nitrogen, sulfur dioxide, and water vapor on zeolite 13X were carried out. Adsorption equilibrium and adsorption rate into solid particle were investigated. Langmuir, Toth, and Freundlich isotherm parameters were calculated from the experiment data at various temperatures. Experimental results were consistent with the theoretically predicted values. Also $CO_2$ adsorption amount was measured under the conditions with impurities such as $SO_2$ and $H_2O$. Binary adsorption data were well fitted to the extended Langmuir isotherm using parameters obtained from pure component experiment. However, $H_2O$ impurity less than, roughly, ${\sim}10^{-5}H_2O\;mol/g$ zeolite 13X enhanced slightly $CO_2$ adsorption. Spherical particle diffusion model well described experimentally measured adsorption rate. Diffusion coefficients and activation energies of $CO_2$, $SO_2$, $N_2$, $H_2O$ were obtained. Diffusion coefficients of $CO_2$ and $SO_2$ decreased with small amount of preadsorbed impurity. Parameter values from this study will be helpful to design of real commercial adsorption process.

산업체에서 많이 사용되는 연소공정은 배가스 성분의 회수나 제거를 필요로 한다. 최근에는 배가스로부터 이산화탄소를 회수하기 위해 제올라이트 13X를 사용하는 MBA(이동상흡착) 공정이 개발되었다. 본 연구에서는 제올라이트 13X에 대한 이산화탄소, 질소, 이산화황 및 수증기의 흡착 실험을 수행하여 흡착평형 및 고체입자 안으로의 흡착속도를 조사하였다. 여러 실험온도에서의 흡착데이터를 Langmuir, Toth, Freundlich 등온흡착식에 적용하여 각 흡착등온식의 파라미터를 구했고, 이론식에 의한 예측값과 실험데이터가 잘 일치함을 확인하였다. 이산화황과 수증기가 불순물로 존재할 경우에 주성분인 이산화탄소의 흡착량을 측정하였다. 이성분 흡착 데이터는 순수 성분에 대해 얻어진 파라미터를 extended Langmuir 등온흡착식에 적용하여 예측한 결과와 잘 일치하였다. 다만, $H_2O$ 불순물이 대략 ${\sim}10^{-5}H_2O\;mol/g$ zeolite 13X 이하 존재할 때에는 $CO_2$ 흡착량이 순수 $CO_2$의 흡착보다 오히려 소량 증가하는 현상이 관찰되었다. 실험으로 측정한 흡착속도를 구형 입자 확산모델에 적용하여 이산화탄소, 이산화황, 질소, 수분의 확산계수와 활성화에너지를 구했다. 미량의 불순물이 흡착되어있을 때는 이산화탄소나 이산화황의 확산계수가 줄어들었다. 본 연구에서 얻어진 파라미터 값들은 실제 흡착공정의 설계에 유용할 것이다.

Keywords

References

  1. Xu, X., Song, C., Wincek, R., Andresen, J. M., Miller, B. G. and Scaroni, A. W., "Separation of $CO_2$ from Power Plant Flue Gas Using a Novel $CO_2$ "Molecular Basket" Adsorbent," Fuel Chemistry Division Preprints, 48(1), 162-163(2003).
  2. Testo, Inc., "Flue Gas Analysis in Industry: Practical guide for Emission and Process Measurements," Sparta, New Jersey(2004).
  3. Beychok, M., "Fossil Fuel Combustion Flue Gases," http://www. eoearth.org/view/article/171355(2012).
  4. Martin, R., "Paris Climate Agreement Rests on Shaky Technological Foundations," MIT Technology Review, https://www.technologyreview.com/s/544551/paris-climate-agreement-rests-on-shakytechnological-foundations/(2015).
  5. Yu, C.-H., Huang, C. H. and Tan, C,-S., "A Review of $CO_2$ Capture by Absorption and Adsorption," Aerosol and Air Quality Research, 12, 745-769(2012).
  6. Wang, J., Huang, L., Yang, R., Zhang, Z., Wu, J., Gao, Y. and Wang, Q., O'Hareb, D. and Zhong, Z. "Recent Advances in Solid Sorbents for $CO_2$ Capture and New Development Trends," Energy Environ. Sci., 7, 3478-3518(2014). https://doi.org/10.1039/C4EE01647E
  7. Kikkinides, E. S., Yang, R. T. and Cho, S. H., "Concentration and Recovery of Carbon Dioxide From Flue Gas by Pressure Swing Adsorption," Ind. Eng. Chem. Res., 32(11), 2714-2720(1993). https://doi.org/10.1021/ie00023a038
  8. Liu, Z., Grande, C. A., Li, P., Yu, J. and Alirio E. Rodrigues, "Multi-bed Vacuum Pressure Swing Adsorption for carbon dioxide capture from flue gas," Separation and Purification Technology, 81, 307-317(2011). https://doi.org/10.1016/j.seppur.2011.07.037
  9. Dantas, T. L. P., Lunab, F. M. T., Silva Jr., I. J., Torresb, A. E. B., Azevedob, D. C. S., Rodrigues, A. E. and Moreira, R. F. P. M., "Carbon Dioxide-nitrogen Separation Through Pressure Swing Adsorption," Chemical Engineering Journal, 172, 698-704(2011). https://doi.org/10.1016/j.cej.2011.06.037
  10. Schell, J., Casas, Nathalie, D. and Mazzotti, M., "Precombustion $CO_2$ Capture by Pressure Swing Adsorption (PSA): Comparison of Laboratory PSA Experiments and Simulations," Ind. Eng. Chem. Res., 52, 8311-8322(2013). https://doi.org/10.1021/ie3026532
  11. Ling, J., Ntiamoah, A., Xiao, P., Xu, D., Webley, P. A. and Zhai, Y., "Overview of $CO_2$ Capture from Flue Gas Streams by Vacuum Pressure Swing Adsorption Technology," Austin Chem. Eng., 1(2), 1009-1015(2014).
  12. Kim, H., Lee, J., Lee, S, Han, J. and Lee, I.-B., "Operating ptimization and Economic Evaluation of Multicomponent Gas Separation Process using Pressure Swing Adsorption and Membrane Process," Korean Chem. Eng. Res., 53(1), 31-38(2015). https://doi.org/10.9713/kcer.2015.53.1.31
  13. Kim, K., Son, Y., Lee, W. B. and Lee, K. S., "Moving Bed Adsorption Process with Internal Heat Integration for Carbon Dioxide Capture," International Journal of Greenhouse Gas Control, 17, 13-24(2013). https://doi.org/10.1016/j.ijggc.2013.04.005
  14. Son, Y., Kim, K. and Lee, K. S., "Feasibility Study of a Moving- Bed Adsorption Process with Heat Integration for $CO_2$ Capture through Energy Evaluation and Optimization," Energy Fuels, 28, 7599-7608(2014). https://doi.org/10.1021/ef502066t
  15. Hauchhum, L. and Mahanta, P.,"Carbon Dioxide Adsorption on Zeolites and Activated Carbon by Pressure Swing Adsorption in a Fixed Bed," International J. Energy Environ. Eng., 5(4), 349-356(2014). https://doi.org/10.1007/s40095-014-0131-3
  16. Bezerra, D. P., Oliveira, R. S., Vieira, R. S., Cavalcante Jr. C. L. and Azevedo, D. C. S., "Adsorption of $CO_2$ on Nitrogen-enriched Activated Carbon and Zeolite 13X," Adsorption, 17(1), 235-246(2011). https://doi.org/10.1007/s10450-011-9320-z
  17. Cavenati, S., Grande, C. A. and Rodrigues, A. E., "Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures," J. Chem. Eng. Data, 49(4), 1095-1101(2004). https://doi.org/10.1021/je0498917
  18. Chue, K. T., Kim, J. N., Yoo, Y. J., Cho, S. H. and Yang, R. T., "Comparison of Activated Carbon and Zeolite 13X for $CO_2$ Recovery from Flue Gas by Pressure Swing Adsorption," Ind. Eng. Chem. Res., 34(2), 591-598(1995). https://doi.org/10.1021/ie00041a020
  19. Crank, J., "The Mathematics of Diffusion," Oxford University Press, London, 89-103(1975).
  20. Ryu, Y. K,. Lee, S. J., Kim, J. W. and Lee, C.-H., "Adsorption Equlibrium and Kinetics of $H_2O$ on Zeolite 13X," Korean J. Chem. Eng., 18(4), 525-530(2001). https://doi.org/10.1007/BF02698301
  21. Arrhenius, S. A., "Uber die Dissociationswarme und den Einflusss der Temperatur auf den Dissociationsgrad der Elektrolyte," Z. Physik. Chem., 4, 96-116(1889).
  22. Gebald, C., Wurzbacher, J. A., Borgschulte, A., Zimmermann, T. and Steinfeld, A., "Single-Component and Binary $CO_2$ and $H_2O$ Adsorption of Amine-Functionalized Cellulose," Environ. Sci. Technol., 48(4), 2497-2504(2014). https://doi.org/10.1021/es404430g
  23. Li, G., Singh, R. Xiao, P. and Webley, P., "Binary Adsorption Equilibrium of Carbon Dioxide and Water Vapor on Zeolite HY," 10th International Conference on Fundamentals of Adsoroption, May, Awaji, Hyogo, Japan(2010).
  24. Ahn, N. G., Kang, S. W., Min, B.-H. and Suh, S.-S., "Adsorption Isotherms of Tetrafluoromethane and Hexafluoroethane on Various Adsorbents," J. Chem. Eng. Data, 51(2), 451-456(2006). https://doi.org/10.1021/je0503756
  25. Builes, S., Sandler, S. I. and Xiong, R., "Isosteric Heats of Gas and Liquid Adsorption," Langmuir, 29, 10416-10422(2013). https://doi.org/10.1021/la401035p
  26. Sircar, S., Mohr, R., Ristic, C. and Rao, M. B., "Isosteric Heat of Adsorption: Theory and Experiment," J. Phys. Chem. B 103, 6539-6546(1999). https://doi.org/10.1021/jp9903817
  27. Chakraborty, A., Saha, B. B., Koyama, S. and K. C. Ng, "On the Thermodynamic Modeling of the Isosteric Heat of Adsorption and Comparison with Experiments," Appl. Phys. Lett., 89, 171901-171903 (2006). https://doi.org/10.1063/1.2360925