DOI QR코드

DOI QR Code

Life Cycle Assessment for the Fabrication Process of Superhydrophilic Oil/Water Separator

초친수성 유수분리필터 제조공정에 관한 전과정평가

  • Park, Sungmook (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Jieun (Department of Chemical Engineering, Kwangwoon University) ;
  • Yeom, Changju (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Heyjin (Department of Chemical Engineering, Kwangwoon University) ;
  • Yang, Sungik (Department of Applied Chemistry, Kyunghee University) ;
  • Eom, Ig-chun (Environmental Health Research Department, National Institute of Environmental Research) ;
  • Kim, Pil-je (Environmental Health Research Department, National Institute of Environmental Research) ;
  • Kim, Younghun (Department of Chemical Engineering, Kwangwoon University)
  • 박성묵 (광운대학교 화학공학과) ;
  • 김지은 (광운대학교 화학공학과) ;
  • 염창주 (광운대학교 화학공학과) ;
  • 이혜진 (광운대학교 화학공학과) ;
  • 양성익 (경희대학교 응용화학과) ;
  • 엄익춘 (국립환경과학원 환경건강연구부) ;
  • 김필제 (국립환경과학원 환경건강연구부) ;
  • 김영훈 (광운대학교 화학공학과)
  • Received : 2016.07.22
  • Accepted : 2016.08.24
  • Published : 2016.12.01

Abstract

Rapid growth in nanotechnologies promises novel benefits through the exploitation of their unique industrial applications. However, as the production volume of nanomaterials increases, their unintentional exposure to the environment has been occured. Potential impacts of nanoproducts on the environment can be evaluated in the life cycle assessment (LCA). LCA is the systematic analysis of the resource usages and emissions over the life time from the primary resources to the moment of disposal. In this study, we performed LCA for fabrication processes of superhydrophilic oil/water separator using nano-$TiO_2$. $TOTAL^{TM}$ freeware was used to analyze for all fabrication processes, and 6-environmental impact factors (resource depletion, climate change, ozone depletion, acidification, eutropication, and photochemical oxidation) were introduced. In addition, the use of nano-$TiO_2$ in the fabrication of superhydrophilic oil/water separator was actively contributed to the environmental impact factors, compared to the bulk-$TiO_2$.

나노기술의 급격한 발전은 다양한 산업응용분야에 기여를 하고 있다. 그러나 나노제품의 증가와 함께, 비의도적인 환경노출이 발생되고 있다. 나노제품에 의한 잠재적인 환경영향은 전과정평가(LCA)를 통해 해석할 수 있다. LCA는 제품의 생산과 폐기에 이르는 전체 공정상의 자원소모 및 배출에 관한 체계적인 해석을 할 수 있다. 본 연구에서는, 나노-$TiO_2$를 이용한 초친수성 유수분리필터를 제조하는 공정에 관하여 LCA를 수행하였다. 이를 위해 무료로 공개된 $TOTAL^{TM}$을 사용하였으며, 6대 환경영향인자인 자원소모, 기후변화, 오존층영향, 산성화, 부영양화, 광화학산화물생성 등의 지표를 해석하였다. 또한 나노-$TiO_2$를 사용하는 것이 유수분리필터 제조공정에서 벌크-$TiO_2$를 사용하는 것보다 긍정적으로 환경영향인자에 기여하는 것으로 파악되었다.

Keywords

References

  1. Oh, S. Y., Sung, H. K., Park, C. and Kim, Y., "Biosorptive Removeal of Bare-, Critrate-, and PVP-Coated Silver Nanopaticles from Aqueous Solution by Activated Sludge," J. Ind. Eng. Chem., 25, 51-55(2015). https://doi.org/10.1016/j.jiec.2014.10.012
  2. Umh, H. N., Roh, J., Lee, B.-C., Park, S., Yi, J. and Kim, Y., "Case Studies for Nanomaterials' Exposure to Environmental Media," Korean Chem. Eng. Res., 50(6), 1056-1063(2012). https://doi.org/10.9713/kcer.2012.50.6.1056
  3. Benn, T. M. and Westerhoff, P., "Nanoparticle Silver Released Into Water from Commercially Available Sock Fabrics," Environ. Sci. Technol., 42, 4133-4139(2008). https://doi.org/10.1021/es7032718
  4. Kiser, M. A., Westerhoff, P., Benn, T., Wang, Y., Perez-Rivera, J. and Hristovski, K., "Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants," Environ. Sci. Technol., 43, 6757-6763(2009). https://doi.org/10.1021/es901102n
  5. Kim, Y., "Nanowaste Treatment Via Incineration," Clean Technol., 22, 1-8(2016). https://doi.org/10.7464/ksct.2016.22.1.001
  6. Park, J., Kwak, B. K., Bae, E., Lee, J., Kim, Y., Choi, K. and Yi, J., "Life Cycle Assessment of Nanomaterials," J. Korean Soc. Environ. Anal., 13, 26-32(2010).
  7. Upadhyayula, V. K. K., Meyer, D. E., Curran, M. A. and Gonzalez, M. A., "Life Cycle Assessment as a Tool to Enhance the Environmental Performance of Carbon Nanotube Products: A Review," J. Clean. Prod., 26, 37-47(2012). https://doi.org/10.1016/j.jclepro.2011.12.018
  8. Pourzahedi, L. and Eckelman, M. J., "Environmental Life Cycle Assessment of Nanosilver-Enabled Bandages," Environ. Sci. Technol., 49, 361-368(2015). https://doi.org/10.1021/es504655y
  9. Gondal, M. A., Sadullah, M. S., Dastageer, M. A., McKinley, G. H., Panchanathan, D. and Varanasi, K. K., "Study of Factors Governing Oil-water Separation Process Using $TiO_2$ Films Prepared by Spray Deposition of Nanoparticle Dispersions," ACS Appl. Mater. Interfaces, 6, 13422-13429(2014). https://doi.org/10.1021/am501867b
  10. Jo, S. and Kim, Y., "Superhydrophilic-Underwater Superoleophobic $TiO_2$-Coated Mesh for Separation of Oil from Oily Seawater/Wastewater," Korean J. Chem. Eng., in press (2016).
  11. Park, J., Kwak, B. K., Bae, E., Lee, J., Kim, Y., Choi, K. and Yi, J., "Characterization of Exposure to Silver Nanoparticles in a Manufacturing Facility," J. Nanopart. Res., 11, 1705-1712(2009). https://doi.org/10.1007/s11051-009-9725-8