DOI QR코드

DOI QR Code

Environment-Friendly Synthesis of Graphene Ball and its Characterization

그래핀 볼의 친환경 제조 및 특성 평가

  • Park, Su-Ryeon (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Jo, Eun Hee (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Sun Kyung (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Chang, Hankwon (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang, Hee Dong (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 박수련 (한국지질자원연구원 자원활용연구센터) ;
  • 조은희 (한국지질자원연구원 자원활용연구센터) ;
  • 김선경 (한국지질자원연구원 자원활용연구센터) ;
  • 장한권 (한국지질자원연구원 자원활용연구센터) ;
  • 장희동 (한국지질자원연구원 자원활용연구센터)
  • Received : 2016.06.27
  • Accepted : 2016.08.24
  • Published : 2016.12.01

Abstract

Spherical graphene balls were fabricated by an aerosol spray drying process after reduced graphene oxide was prepared by the liquid phase reaction using glucose as an environment-friendly reducing agent. Spherical morphology of the as-fabricated particles was observed by FE-SEM analysis. Diffraction patterns of spherical particles were found as graphene by XRD analysis. Sphericity of GB was controlled by the variation of operating temperature, amount of glucose, and addition of $NH_4OH$. Higher sphericity of GB was prepared at higher operating temperature in the presence of $NH_4OH$. As the amount of glucose in the liquid phase reaction increased in the presence of $NH_4OH$, sphericity of GB increased. The highest sphericity of GB was 1.1. GB of higher sphericity showed lower aggregation property than that of lower sphericity. Furthermore, as-prepared GBs were found as a potential electrode material for capacitor.

친환경 환원제인 글루코스를 사용하여 액상 반응으로 그래핀 산화물을 환원시킨 후 에어로졸 분무건조 공정을 통하여 구형의 그래핀 볼(Graphene Ball, GB)을 제조하였다. 제조된 입자는 FE-SEM 분석을 통하여 구형임을 관찰하였고, XRD 분석으로 구형 입자들의 결정형이 그래핀임을 확인하였다. GB의 구형도는 온도, 글루코스의 양, 암모니아수($NH_4OH$)의 주입에 따라 조절할 수 있었다. 제조된 GB 중, 암모니아수 주입 하에 온도가 높은 조건에서 제조된 GB가 높은 구형도를 보였다. 암모니아수 주입하에 진행된 액상반응에 주입된 글루코스의 양이 증가할수록 구형도가 높은 GB가 생성되었다. 가장 높은 구형도를 가지는 GB의 구형도는 1.1이었다. 상대적으로 높은 구형도를 가지는 GB가 낮은 구형도를 가지는 GB보다 응집성이 감소됨을 확인할 수 있었다. 추가적으로 GB의 전기화학 분석 결과를 통해 GB가 커패시터의 전극 재료로서의 가능성을 보여주었다.

Keywords

References

  1. Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L. and Zhang, J., "A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors," Chem. Soc. Rev., 44, 7484-7539(2015). https://doi.org/10.1039/C5CS00303B
  2. Geim, A. K. and Novoselov, K. S., "The Rise of Graphene," Nat Mater., 6, 183-191(2007). https://doi.org/10.1038/nmat1849
  3. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhass, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T. and Ruoff, R. S., "Graphene-Based Composite Materials," Nature, 442, 282-286(2006). https://doi.org/10.1038/nature04969
  4. Li, Z. Y., Akhtar, M. S., Kuk, J. H., Kong, B. S. and Yang, O.-B., "Graphene Application as a Counter Electrode Material for Dyesensitized Solar Cell," Materials Letters, 86, 96-99(2012). https://doi.org/10.1016/j.matlet.2012.07.006
  5. Jang, H. D., Kim, S. K., Chang, H., Choi, J. W. and Huang, J., "Synthesis of Graphene Based Nobel Metal Composites for Glucose Biosensor," Materials Letters, 106, 277-280(2013). https://doi.org/10.1016/j.matlet.2013.05.033
  6. Huang, Y., Liang, J. and Chen, Y., "An Overview of the Applications of Graphene-Based Materials in Supercapacitors," Small, 8, 1805-1834(2012). https://doi.org/10.1002/smll.201102635
  7. Kim, K. M., Lee, Y.-G. and Kim, S. O., "Electrode Properties of Graphene-Based Nanocomposites for Energy Storage Devices," Korean Chem. Eng. Res, 48(3), 292-299(2010).
  8. Choi, B. G., Huh, Y. S. and Hong, W. H., "Electrochemical Characterization of Porous Graphene Fime for Supercapacitor Electrode," Korean Chem. Eng. Res, 50(4), 754-757(2012). https://doi.org/10.9713/kcer.2012.50.4.754
  9. Hummers, W. S. and Offeman, R. E., "Preparation of Graphite Oxide," J. Am. Soc., 80, 1339(1958). https://doi.org/10.1021/ja01539a017
  10. Chen, Z., Ren, W., Gao, L., Pei, S. and Cheng, H. M., "Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapor Deposition," Nat. Mater., 10, 424-428 (2011). https://doi.org/10.1038/nmat3001
  11. Si, Y. and Samulski, E. T., "Synthesis of Water Soluble Graphene," Nano Lett., 8, 1679-1682(2008). https://doi.org/10.1021/nl080604h
  12. Park, S. J., An, J., Jung, I., Piner, R. D., An, S. J., Li, X., Velamakanni, A. and Ruoff, R. S., "Collodial Suspensions of Highly Reduced Graphen Oxide in a Wide Variety of Organic Solvents," Nano Lett., 9, 1593-1597(2009). https://doi.org/10.1021/nl803798y
  13. Kim, Y. K., Kim, M. H. and Min, D. H., "Biocmpatible Reduced Graphene Oxide Prepared by Using Dextran as a multifunctional Reducing Agent," Chem. Commun., 47, 3195-3197(2011). https://doi.org/10.1039/c0cc05005a
  14. Fernandez-Merino, M. J., Guardia, L., Paredes, J. I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A. and Tascon, J. M. D., "Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions," J. Phys. Chem. C, 114, 6426-6432 (2010).
  15. Lei, Z., Lu, L. and Zhao, X. S., "The Electrocapacitive Properies of Graphene Oxide Reduced by Urea," Energy Environ. Sci., 5, 6391-6399(2012). https://doi.org/10.1039/C1EE02478G
  16. Zhu, C., Guo, S., Fang, Y. and Dong, S., "Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets," ACS Nano, 4, 2429-2437(2010). https://doi.org/10.1021/nn1002387
  17. Wang, W., Guo, S., Lee, I., Ahmed, K., Zhong, J., Favors, Z., Zaera, F., Ozkan, M. and Ozkan, C. S., "Hydrous Ruthenium Oxide NanoParticles Anchored to Graphene and Carbon Nanotube Hybrid Fom for Supercapacitors," Scientific Reports, 4, 4452-4461(2014).
  18. Chen, C. M., Zhang, Q., Huang, C. H., Zhao, X. C., Zhang, B. S., Kong, Q. Q., Wang, M. Z., Yang, Y. G., Cai, R. and Su, D. S., "Macroporous 'Bubble' Graphene Film via Template-directed Odered-assembley for High Rate Supercapacitors," Chem. Commun., 48, 7149-7151(2012). https://doi.org/10.1039/c2cc32189k
  19. Xu, Y., Sheng, K., Li, C. and Shi, G., "Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process," ACS Nano, 4, 4324-4330(2010). https://doi.org/10.1021/nn101187z
  20. Luo, J., Jang, H. D. and Huang, J., "Effect of Sheet Morphology on the Scalabilibty of Graphene-Based Ultracapacitors," ACS Nano, 7, 1464-1471(2013). https://doi.org/10.1021/nn3052378
  21. Kim, D.-J. and Kim, K.-S., "Preparation of Nanoparticles by Gas Phase Processes," Korean Chem. Eng. Res., 45(6), 536-546 (2007).
  22. Jang, H. D., Kim, S. K., Chang, H., Roh, K. M., Choi, J. W. and Huang, J., "A Glucose Biosensor Based on $TiO_2$-Graphene Composite," Biosensors and Bioelectronics, 38, 184-188(2012). https://doi.org/10.1016/j.bios.2012.05.033
  23. Luo, J., Jang, H. D., Sun, T., Xiao, L., He, Z., Katsoulidis, A. P., Kanatzidis, M. G., Gibbson, J. M. and Huang, J., "Compression and Aggregation-Resistant Particles of Crumpled Soft Sheets," ACS Nano, 5, 8943-8949(2011). https://doi.org/10.1021/nn203115u
  24. Juansah, J. and Yulianti, W., "Studies on Electrical Behavior of Glucose Using Impedance Spectroscopy," IOP Conf. Series: Earth and Environmental Science, 31, 012039(2016).
  25. Zhao, B., Liu, P., Juang, Y., Pan, D., Tao, H., Song, J., Fang, T., Xu, W., "Supercapacitor Performances of Thermally Reduced Graphene Oxide," J. Power Sources, 198, 423-427(2012). https://doi.org/10.1016/j.jpowsour.2011.09.074