DOI QR코드

DOI QR Code

순도에 따른 Al 판재의 재결정 거동

Recrystallization Behavior of Aluminum Plates Depending on Their Purities

  • 이현우 (강릉원주대학교 신소재금속공학과) ;
  • 하태권 (강릉원주대학교 신소재금속공학과) ;
  • 박형기 (한국생산기술연구원 강원본부) ;
  • 민석홍 (강릉원주대학교 신소재금속공학과)
  • Lee, Hyun Woo (Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University) ;
  • Ha, Tae Kwon (Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University) ;
  • Park, Hyung-Ki (Korea Institute of Industrial Technology, Gangwon Regional Division) ;
  • Min, Seok-Hong (Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University)
  • 투고 : 2016.10.10
  • 심사 : 2016.10.31
  • 발행 : 2016.12.27

초록

Recrystallization behavior has been investigated for commercial purity AA1050 (99.5wt%Al) and high purity 3N Al (99.9wt% Al). Samples were cold rolled with 90% of thickness reduction and were annealed isothermally at 290, 315, and 350o C for various times until complete recrystallization was achieved. Hardness measurement and Electron Backscatter Diffraction(EBSD) analyses, combined with Grain Orientation Spread(GOS), were employed to investigate the recrystallization behavior. EBSD analysis combined with GOS were distinctly revealed to be a more useful method to determine the recrystallization fraction and to characterize the recrystallization kinetics. As the annealing temperature increased, recrystallization in AA1050 accelerated more than that process did in Al 3N. Both AA1050 and Al 3N showed the same temperature dependence of the n value of the Johnson-Mehl-Avrami-Kolmogorov equation(JMAK equation), i.e., n values increased as annealing temperature increased. Activation energy of recrystallization in AA1050 is about 176 kJ/mol, which is comparable with the activation energy of grain boundary migration in cold-rolled AA1050. This value is somewhat higher than the activation energy of recrystallization in Al 3N.

키워드

참고문헌

  1. D. D. L. Chung, J. Mater. Eng. Perform., 9, 350 (2000). https://doi.org/10.1361/105994900770346042
  2. S. Loya and Habibullakhan, Int. J. Electromag. Appl., 6, 31 (2016).
  3. W. C. Liu and J. G. Morris, Metall. Mater. Trans. A, 36A, 2829 (2005).
  4. M. Tajally and Z. Huda, Met. Sci. Heat Treat., 53, 213 (2011). https://doi.org/10.1007/s11041-011-9371-5
  5. B. Bay and N. Hansen, Metall. Trans. A, 10A, 279 (1979).
  6. B. Bay and N. Hansen, Metall. Trans. A, 15A, 287 (1984).
  7. H. R. R. Ashtiani and P. Karami, Model. Numer. Simul. Mater. Sci., 5, 1 (2015).
  8. I. Gutierrez, F. R. Castro, J. J. Urcola and M. Fuentes, Mater. Sci. Eng., A, 102, 77 (1988). https://doi.org/10.1016/0025-5416(88)90535-6
  9. N. H. Lin, C. P. Chang and P. W. Kao, Metall. Mater. Trans. A, 26A, 2185 (1995).
  10. R. A. Vandermeer and D. Juul Jensen, Texture Microstruct., 26-27, 263 (1996).
  11. R. A. Vandermeer and D. Juul Jensen, Acta Mater. 49, 2083 (2001). https://doi.org/10.1016/S1359-6454(01)00074-X
  12. G. Wu and D. Juul Jensen, Mater. Sci. Technol., 21, 1407 (2005). https://doi.org/10.1179/174328405X71602
  13. E. M. Lauridsen, H. F. Poulsen, S. F. Nielsen and D. Juul Jensen, Acta Mater., 51, 4423 (2003). https://doi.org/10.1016/S1359-6454(03)00278-7
  14. S. P. Chen, D. N. Hanlon, S. Van der Zwaag, Y. T. Pei and J. Th. M. Dehosson, J. Mater. Sci., 37, 989 (2002). https://doi.org/10.1023/A:1014356116058
  15. S. P. Chen and S. Van der Zwaag, Metall. Mater. Trans. A, 37A, 2859 (2006).
  16. O. Engler, H. E. Vatne and E. Nes, Mater. Sci. Eng. A205, 187 (1996).
  17. W. Wang, A. L. Helbert, T. Baudin, F. Brisset and R. Penelle, Mater. Charact., 64, 1 (2012). https://doi.org/10.1016/j.matchar.2011.11.008
  18. R. D. Doherty, I. K. Kashyap and S. Panchanadeeswaran, Acta metall, mater,. 41, 3029 (1993). https://doi.org/10.1016/0956-7151(93)90117-B
  19. I. Samajdara, B. Verlindena, L. Rabeta and P. Van Houtte, Mater. Sci. Eng., A266, 146 (1999).
  20. R. A. Vandermeer, Metall. Trans., 1, 819 (1970)
  21. W. Skrotzki, N. Scheerbaum, C. G. Oertel, H. G. Brokmeier, S. Suwas, L. S. Toth, Acta Mater., 55, 2211 (2007). https://doi.org/10.1016/j.actamat.2006.08.018
  22. U. Koster, Metal Sci., 8, 151 (1974). https://doi.org/10.1179/msc.1974.8.1.151
  23. M. P. Black and R. L. Higginson, Scripta. Mater., 41, 125 (1999). https://doi.org/10.1016/S1359-6462(99)00051-2
  24. J. Tarasiuk, Ph. Gerber and B. Bacroix, Acta Mater., 50, 1467 (2002). https://doi.org/10.1016/S1359-6454(02)00005-8
  25. S. Mitsche, P. Poelt and C. Sommitsch, J. Micro., 227, 267 (2007). https://doi.org/10.1111/j.1365-2818.2007.01810.x
  26. J. H. Park, T. H. Ahn, H. S. Choi, J. M. Chung, D. I. Kim, K. H. Oh and H. N. Han, Microsc. Microanal. 19, 21 (2013).
  27. J. Huang, W. J. Poole and M. Militzer, Metall. Mater. Trans. A, 35A, 3363 (2004).
  28. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., p. 232, ELSEVIER Ltd, Oxford, UK (2004).
  29. M. H. Alvi, S. Cheong, H. Weiland and A. D. Rollett, Proceedings From Materials Solutions Conference 2003: 1st International Symposium on Metallurgical Modeling for Aluminium Alloys(Pittsburgh, PA, October 2003) p.191.
  30. A. D. Rollett, D. J. Srolovitz, R. D. Doherty and M. P. Anderson, Metall., 37, 627 (1989).