DOI QR코드

DOI QR Code

Wireless Power Harvesting Techniques to Improve Time to Fly of Drone

무인항공기 비행시간 향상을 위한 무선 전력획득 기술

  • Nam, Kyu-hyun (Kookmin University Department of Secured Smart Electric Vehicle) ;
  • Jung, Won-jae (Kookmin University Department of Secured Smart Electric Vehicle) ;
  • Jang, Jong-eun (Epic Solution Co., Ltd.) ;
  • Chae, Hyung-il (Kookmin University Department of Electrical Engineering) ;
  • Park, Jun-seok (Kookmin University Department of Electrical Engineering)
  • Received : 2016.08.31
  • Accepted : 2016.10.24
  • Published : 2016.11.30

Abstract

This paper presents a self-powered sensor-node scheme using a RF wireless power harvesting techniques for improve drone time of flight. Sensor-node that is proposed is turned when two conditions satisfy: The one is input RF ID data from master-node should be same with sensor-node's ID, and the other one is RF wireless power harvesting system is turned on by hysteresis switch. In this paper, master-node's output is 26 dBm at 263 MHz. Maximum RF to DC power conversion efficiency is about 55% at 4-6 dBm input power condition (2 meter from master-node). The maximum RF wireless power harvesting range is about 13 meter form master-node. And power consumption of the sensor-node's load elements such as transmitter, MCU and temperature sensors is approximately average 15 mA at 5.0 V for 10 msec.

본 논문은 무인항공기 비행시간 향상을 위해 RF 무선 전력 획득 기술을 이용한 self-powered 센서 노드 회로에 관해 설계 연구하였다. 제안하는 센서 노드는 두 가지 경우가 만족하였을 때 동작한다. 마스터 노드의 입력 RF ID와 센서 노드의 ID가 같을 경우와 RF 무선 전력 획득 시스템이 히스테리시스 스위치에 의해 동작될 때다. 마스터 노드의 출력은 263 MHz에서 26 dBm을 사용하였다. RF 전력을 DC 전력으로 변환하는 최대 효율은 마스터 노드에서 2미터 떨어진 지점(4-6 dBm)에서 55 %이다. 최대 RF 무선 전력 획득 범위는 마스터 노드와 센서 노드의 거리가 약 13 m 이다. 센서 노드의 MCU 및 수신기와 온도 센서와 같은 부하의 소비 전력은 10 msec 동안 5.0 V에서 평균 15 mA이다.

Keywords

References

  1. S. W. Son, "Overview and issues of drone wireless communication," J. KICS, vol. 33, no. 2, pp. 93-99, Feb, 2016.
  2. Y. S. Lee, "Optimal antenna design for UAV wireless charging," The Korean Soc. Aeronautical and Space Sci., pp. 757-760, Jeju Island, Korea, Nov. 2014.
  3. J. H. Jin, "Understanding and trends in the UAV/Drone," J. KICS, vol. 33, no. 2, pp. 93-99, Feb. 2016.
  4. M. S. Han, "RF based wireless power transfer system for smartphone wireless charging applications," in Proc. KICS Int. Conf. Commun., pp. 303-304, Jeju Island, Korea, Jun. 2014.
  5. J. Akkermans, M. van Beurden, G. Doodeman, and H. Visser, "Analytical models for low-power rectenna design," IEEE Ant. Wirel. Propaga. Lett., vol. 4, pp. 187-190, 2005. https://doi.org/10.1109/LAWP.2005.850798
  6. J. Zbitou, M. Latrach, and S. Toutain, "Hybrid rectenna and monolithic integrated zero-bias microwave rectifier," IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 147-152, Jan. 2006. https://doi.org/10.1109/TMTT.2005.860509
  7. G. Vera, A. Georgiadis, A. Collado, and S. Via, "Design of a 2.45 GHz rectenna for electromagnetic (EM) energy scavenging," in IEEE Radio Wireless Symp., pp. 61-64, 2010.
  8. Triet Le, "Efficient far-field radio frequency energy harvesting for passively powered sensor networks," IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1287-1302, May 2008. https://doi.org/10.1109/JSSC.2008.920318
  9. B. Razavi, "A study on injection locking and pulling in oscillators," IEEE J. Solid-State Circuits, vol. 39, no. 9, Sept. 2004.

Cited by

  1. 무인항공기를 위한 3.7V 단일 배터리 셀 고효율 전력관리 회로시스템 vol.24, pp.3, 2016, https://doi.org/10.6117/kmeps.2017.24.3.063