DOI QR코드

DOI QR Code

이종 셀룰러 망에서 계층 간 간섭완화를 위한 인지 빔형성 기법

A Cognitive Beamforming Scheme for Cross-Tier Interference Mitigation in Heterogeneous Cellular Networks

  • Seo, Ju-yeol (Division of Electrical and Electronic Engineering, College of Information Technology, Kangwon National University) ;
  • Park, Seungyoung (Division of Electrical and Electronic Engineering, College of Information Technology, Kangwon National University)
  • 투고 : 2016.07.08
  • 심사 : 2016.08.31
  • 발행 : 2016.11.30

초록

기존의 이종 셀룰러 망 환경에 허가된 사용자만이 기지국에 접속되는 closed access 정책이 적용되면, 매크로셀 사용자는 주변의 접속이 허용되지 않는 소형셀 기지국으로 인한 cross-tier 간섭 문제를 겪게 된다. 이 문제를 완화하기 위해 해당 소형셀 기지국이 매크로셀 사용자의 채널에 직교하는 빔형성 벡터를 사용하여 자신에게 속한 사용자에게 데이터를 전송하는 기법이 제안되었다. 이 기법을 적용하기 위해서는 매크로셀 기지국, 매크로셀 사용자, 소형셀 기지국 간의 상호 정보교환이 필요하므로 이로 인해 시스템의 복잡도가 증가하게 된다. 본 논문에서는 상호 정보교환 없이 소형셀 기지국이 스스로 환경을 인지하여 co-tier 간섭전력뿐만 아니라 cross-tier 간섭전력을 동시에 줄일 수 있는 인지 빔형성 기법을 제안한다. 구체적으로 소형셀 기지국이 cross-tier 간섭문제를 겪는 사용자를 파악한 후, 해당 사용자의 채널과 주변 소형셀 사용자 채널에 동시에 직교하는 빔형성 벡터를 생성하여 데이터 전송에 사용하여 cross-tier 간섭과 co-tier 간섭을 동시에 줄인다. 제안 기법의 유효성을 검증하기 위해 시스템 레벨 시뮬레이션을 수행하였고, 해당 결과를 통해 제안된 기법이 cross-tier 간섭을 효과적으로 줄일 수 있음을 확인하였다.

When a closed access policy in which only an authorized user is allowed to access to a given base station (BS) has been employed in heterogeneous cellular networks, a macro-cell user is used to experience strong cross-tier interference from its adjacent small-cell BSs to which the user is not allowed to access. To mitigate this problem, it has been proposed that a small-cell BS employs a beamforming vector which is orthogonal to the channel of the victim user. However, this technique requires considerable mutual exchange of information among the macro-cell BS, the macro-cell user, and the small-cell BS. In this paper, we propose a cognitive beamforming scheme, in which a small-cell BS employs the beamforming orthogonal to the victim users' channel without any explicit mutual information exchange. Particularly, the small-cell BS finds small- and macro-cell users experiencing the co-tier and cross-tier interferences from it, respectively. Then, it employs a beamforming which is orthogonal to the victim users' channels to mitigate the co-tier and cross-tier interferences. Using the system-level simulation, we demonstrate that the proposed scheme effectively mitigates the cross-tier interference problem.

키워드

참고문헌

  1. Cisco, Cisco visual networking index: Global mobile data traffic forecast update, 2015-2020, Cisco white paper, Feb. 2016.
  2. A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, "LTE-advanced: Next-generation wireless broadband technology," IEEE Wirel. Commun., vol. 17, no. 3, pp. 10-22, Jun. 2010. https://doi.org/10.1109/MWC.2010.5490974
  3. V. Chandrasekhar and J. G. Andrews, "Spectrum allocation in tiered cellular networks," IEEE Trans. Commun., vol. 57, no. 10, pp. 3059-3068, Oct. 2009. https://doi.org/10.1109/TCOMM.2009.10.080529
  4. C. Mun and H. S. Jo, "Dynamic channel allocation in closed-access small cell networks," J. KICS, vol. 39, no. 1, pp. 50-61, Jan. 2014.
  5. C. S. Lee, J. H. Kim, J. H. Kwak, E. K. Kim, and S. Chong, "Distributed BS transmit power control for utility maximization in small-cell networks," J. KICS, vol. 38, no. 12, pp. 1125-1134, Dec. 2013.
  6. D. G. Jeong and Y. S. Kim, "Power control of femto base station for protecting macrocell users," J. KICS, vol. 38, no. 10, pp. 865-873, Oct. 2013.
  7. S. T. Lee, C. S. Ahn, and J. T. Shin, "Dynamic downlink resource management of femtocells using power control in OFDMA networks," J. KICS, vol. 37, no. 5, pp. 339-347, May 2012. https://doi.org/10.7840/KICS.2012.37A.5.339
  8. H. O. Kpojime, "Interference mitigation in cognitive femtocell networks," Ph.D. Thesis, Univ. of Bedfordshire, Sept. 2015.
  9. E. Yaacoub, "Interference mitigation in femtocell networks with joint channel sensing and resource allocation," IEEE Wirel. Commun., pp. 783-788, Mar. 2015.
  10. H. Kalbkhani, V. Solouk, and M. G. Shayesteh, "Resource allocation in integrated femto-macrocell networks based on location awareness," IEEE J. M. IET Commun., vol. 9, no. 7, pp. 917-932, Jul. 2015. https://doi.org/10.1049/iet-com.2014.0691
  11. A. R. Elsherif, W. P. Chen, A. Ito, and Z. Ding, "Adaptive resource allocation for interference management in small cell networks," IEEE Trans. Commun., vol. 63, no. 6, pp. 2107-2125, Jun. 2015. https://doi.org/10.1109/TCOMM.2015.2420676
  12. M. Maso, L. S. Cardoso, M. Debbah, and L. Vangelista, "Cognitive orthogonal precoder for two-tiered networks deployment," IEEE J. Sel. Areas Commun., vol. 31, no. 11, pp. 2338-2348, Nov. 2013. https://doi.org/10.1109/JSAC.2013.131108
  13. A. Adhikary, V. Ntranos, and G. Caire, "Cognitive femtocells: Breaking the spatial reuse barrier of cellular systems," in Proc. IEEE Inf. Theory Workshop, pp. 1-10, Paraty, Brazil, Oct. 2011.
  14. A. Paulraj, N. Rohit, and G. Dhananjay, Introduction to space-time wireless communications, Cambridge Univ. Press, 2003.
  15. D. B. Cheikh, J. M. Kelif, M. Coupechoux, and P. Godlewski, "Multicellular zero forcing precoding performance in Rayleigh and shadow fading," in Proc. IEEE Veh. Tech. Conf., pp. 1-5, Budapest, Hungary, May 2011.
  16. T. L. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wirel. Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010. https://doi.org/10.1109/TWC.2010.092810.091092
  17. G. Strang, Linear Algebra and Its Applications, 3rd Ed., Harcourt Brace & Company, 1988.
  18. 3GPP TR 36.814 v9.0.0, Further advancements for E-UTRA physical layer aspects (Release 9), Technical Report 3GPP, Mar. 2010.
  19. J. Zander and S. Kim, Radio resource management for wireless networks, Artech House, 2001.
  20. 3GPP R4-092042, Simulation assumption and parameters for FDD HeNB RF requirements, 3GPP TSG RAN WG4 Meeting 51, May 2009.