RESEARCH ARTICLE

XRCC1 Gene Polymorphisms and Breast Cancer Risk: A Systematic Review and Meta- analysis Study

Ali Sanjari Moghaddam ${ }^{2,1}$, Milad Nazarzadeh ${ }^{2}$, Hossein Sanjari Moghaddam ${ }^{3}$, Zeinab Bidel ${ }^{2}$, Aliasghar Karamatinia ${ }^{1}$, Hossein Darvish ${ }^{4}$, Alireza Mosavi Jarrahi ${ }^{1,2,5 *}$

Abstract

Breast cancer risk assessment has developed during years and evaluation of genetic factor affecting risk of breast cancer is an important component of this risk assessment. The aim of this meta-analysis was to investigate the role of XRCC1 polymorphisms (Arg194Trp, Arg280His and Arg399Gln) in risk of breast cancer among different population and categories of menopausal status.PubMed, Medline, Web of Science, and PubMed Central were systematically searched to identify studies evaluating association between breast cancer and XRCC1 gene polymorphisms (Arg194Trp, Arg280His and Arg399Gln). Two authors independently extracted required information. Odds Ratios were pooled for four genetic inheritance models using both fixed and the DerSimonian and Laird random-effect models. Egger's test and contour-enhanced funnel plot was used to evaluate publication bias and small study effect. Additional subgroup analysis was performed for menopausal status, ethnicity, and source of controls. After evaluation and applying inclusion criteria on extracted studies, fifty three studies were included in this meta-analysis. For polymorphisms of Arg 194Trp and Arg 280 His , no significant association was observed in all genetic models. Arg 194 Trp had a protective effect in post-menopausal status only in homozygote model ($\mathrm{OR}=0.57$ [0.37-0.88]). Arg399Gln showed significant association with breast cancer in homozygote ($\mathrm{OR}=1.21$ [1.10-1.34]), dominant ($\mathrm{OR}=1.09$ [1.03-1.15]) and recessive ($\mathrm{OR}=1.21$ [1.09-1.35]) genetic models. Arg399Gln was associated with higher risk in post-menopausal status for homozygote and heterozygote models. Our findings suggest that XRCC1 gene polymorphisms modify breast cancer risk in different populations and different categories of menopausal status.

Keywords: XRCC1 - polymorphism - breast cancer - meta-analysis

Asian Pac J Cancer Prev, 17,Cancer Control in Western Asia Special Issue, 323-335

Introduction

Breast cancer accounts as the leading type of cancer among women and is the second most common cause of cancer related death (Siegel et al., 2014). Although breast cancer incidence is less in developing countries, but it is increasing (Key et al., 2001). Studies identified many risk factors for breast cancer including earlier age at menarche, nulliparity, menopause at late age, oral contraceptives, hormonal therapy for the menopause, exogenous hormone, family of breast cancer, high fat diet, alcohol and smoking (Key et al., 2001). Some increase in breast cancer risk is attributable to hereditary factors. Nevertheless, high-risk mutations only explain 5% of breast cancer incidence (Lichtenstein et al., 2000). BRCA1 and BRCA2 with
function of DNA repair are known as susceptibility genes for breast cancer (Bertwistle and Ashworth, 1998). Evaluation of breast cancer patients and their relatives demonstrated Defect in DNA repair (Patel et al., 1997)

Base excision repair (BER) is a recovery pathway for localized damage to DNA due to oxidative stress and ionizing radiation. The gene XRCC1 (X-ray repair cross-complementing group 1) is a component involved in DNA BER. Three distinct domains of XRCC1 are sites for interaction with DNA polymerase b , poly(ADP-ribose) polymerase, and DNA ligase III (Silva et al., 2007a). Three known polymorphisms of the XRCC1 gene included codons 194 (Arg to Trp), 280 (Arg to His), and 399 (Arg to Gln) (Shen et al., 1998).

Many attempts have been accomplished to clarify

[^0]association of breast cancer and XRCC1 polymorphism. Despite many studies showed no association between breast cancer and XRCC1 gene polymorphisms (Thyagarajan et al., 2006; Smith et al., 2008; Liu et al., 2011b), some demonstrated increase in risk of breast cancer (Przybylowska-Sygut et al., 2013a; Shadrina et al., 2014b) or even decrease of breast cancer risk (Patel et al., 2005a).

Breast cancer risk assessment has developed during years and evaluation of breast cancer is important for decision making by physicians (Armstrong et al., 2000). In order to clear association of breast cancer with XRCC1 gene polymorphisms (Arg194Trp, $\operatorname{Arg} 280 \mathrm{His}$ and Arg399Gln) we conducted this systematic review and meta-analysis.

Material and Methods

Search strategy

To retrieve all relevant studies, a systematic search of databases (PubMed/Medline, ISI web of knowledge/ Thompson Reuters and PubMed central) was conducted from their commencement to April 2015. Search terms were applied were terms related to breast cancer combined to term polymorphism with balloon AND. further assessment was performed with hand search of references of eligible studies and meta-analyses. Full detail of search strategy is available in supplementary Appendix (contact author).

Selection criteria

Studies evaluating association between breast cancer and XRCC1 gene polymorphisms (Arg194Trp, Arg280His and $\operatorname{Arg} 399 \mathrm{Gln}$) were included in this meta-analysis. Studies were excluded if 1) had no control group, 2) were all type of letters articles, comments, and editorial, animal studies, case reports and case series studies, 3) evaluate different polymorphisms of XRCC1 gene and 4) reported occurrence of benign breast diseases, secondary/metastatic BC or all-cause mortality as the main outcome. List of excluded studies and reason of exclusion is provided in supplementary appendix (contact author).

Data extraction

Two authors, applying the priori inclusion and exclusion criteria, screened all citations and abstracts and extract all needed information from included literatures, independently. When conflicting results was seen between reviewers, a third author (senior researcher) discussed about disagreement. EndNote X7 software was used to manage review and organize screening. The following information and data was extracted: name of first author, publication date, study design, source of controls (population based or hospital based), considered confounders in each models, genotyping methods, population ethnicity, total number of cases and controls, menopausal status of cases and controls, number of cases and controls according to menopausal status, mean age of cases and controls, minor allele frequency and (odds ratio) OR and their reported 95% confidence interval (CI) for homozygote, heterozygote and other inheritance
models.. Finally, senior author rechecked all information of final stage table. For clarifications and more information (or unavailable full texts), we contacted with first and corresponding author to provide additional data.

Literature quality assessment

For qualification of finally identified studies, five items were considered: 1) source of control group, 2) ethnicity, 3) Hardy Weinberg Equilibrium among controls, 4) menopausal status, and 5) sample size. Detailed study qualification is presented in the supplementary appendix (contact author).

Statistical analysis

Observed frequencies of the XRCC genotype was assessed for Hardy-Weinberg equilibrium using chi-square statistic. Maximally adjusted ORs and 95% confidence intervals (CIs) were used to combine as the measure of association. The pooled OR were estimated using both fixed and the DerSimonian and Laird random-effect model. Heterogeneity was assessed using Cochran's Q test and inconsistency index (I2). An I2 value above 75% at a significance level of <0.1 was determined as presence of heterogeneity. Sensitivity analysis was performed by sequential omission of individual studies. Publication bias (small study effect) was assessed with the Egger's regression and contour-enhanced funnel plot. The contour-enhanced funnel plot makes it easier to assess the statistical significance of the hypothetical missing studies. If the region where missing studies exist includes both low and high statistical significance (P -value lower than 1% to greater than 10%, this mean that studies showing XRCC1 as a non-significantly and significantly less effective factor may be missed. Pooled ORs were estimated for all genetic inheritance models including homozygote, heterozygote, recessive and dominant, as well as subgroup analysis were performed for considered variables. The menopausal status stratified to post-menopause and pre menopause. The ethnicity subgroup was defined based on what was exactly mentioned in studies. Subgrouping included population based (those reported a population based case control) and hospital based (those reported a hospital based case control). All analyses were performed using Stata version 14 (Stata Corp LP, College Station, TX, USA).

Results

Through a detailed search of databases, 53 literatures were identified for further evaluation (Figure 1) (Kim et al., 2002b; Han et al., 2003; Moullan et al., 2003; Shu et al., 2003; Smith et al., 2003a; Smith et al., 2003b; Deligezer and Dalay, 2004; Figueiredo et al., 2004; Försti et al., 2004; Huang et al., 2004; Chacko et al., 2005; Dufloth et al., 2005; Metsola et al., 2005; Patel et al., 2005b; Shen et al., 2005; 2006; Brewster et al., 2006; Bu et al., 2006; Pachkowski et al., 2006b; Thyagarajan et al., 2006; Zhai et al., 2006; Zhang et al., 2006b; Costa et al., 2007; Silva et al., 2007b; Ali et al., 2008; Kipikasova et al., 2008; Loizidou et al., 2008; Mitra et al., 2008; Saadat et al., 2008; Sangrajrang et al., 2008; Smith et al., 2008; Sobczuk et al., 2009a; Syamala et al., 2009; Jakubowska

0	0	60		$\left(1 Z^{\prime} \mathrm{T}-\mathrm{S} 8^{\circ} 0\right.$ $10^{\circ} \mathrm{I}$	$\angle 1$	$90^{\circ} 0$	¢s	$10^{\circ} 0$			¢I	$60^{\circ} 0$	I＇S9	0	$\begin{gathered} \left(\dagger Z^{\prime} \mathrm{I}^{-}-6 L^{\circ} 0\right) \\ 66^{\circ} 0 \end{gathered}$	$\left(80^{\circ} \mathrm{T}-\angle 8^{\circ} 0\right)$ L60	91	0	0	¢80	$\begin{gathered} \left(L Z^{\prime} I-Z L^{\circ} 0\right) \\ 96^{\circ} 0 \end{gathered}$	$\begin{gathered} \left(L Z^{\prime} I-Z L^{\prime} \cdot 0\right) \\ 06 \cdot 0 \end{gathered}$	\llcorner	possn！ －peun	
			（tt＇91－0c＊0）	（95＇1－9L＊0）					（8で「－960）	（E！${ }^{\circ}-960$ ）					（1¢ ${ }^{\text {－}-660}$						（8t＇IT8．0）			p3ısn！	чบวแ
$9^{\text {a }} 1$	ガル	$90^{\circ} 0$	£̇て	$60^{\circ} \mathrm{I}$	τ	50\％	$\varepsilon 9$	0	H^{\prime}	${ }^{0} 0^{\circ}$	91	\＆0\％	で6t	200	が1	$60^{\circ} \mathrm{I}$	sı	$90^{\circ} 0$	62	Sto	H＇I	$0 \mathrm{I}^{\circ}$	$\varepsilon 1$	－pv	$-1 \mathrm{sn!pg}$
					1						1						1						1	вопу	
			（Eで1－580）	（とて＇1－s80）					（68． $\left.1-98^{\circ} 0\right)$	（Iでィ－860）					（LE＇t－98＊0）	（Iで1－L600）					（ ε^{*}＇－z8＊0）	（LでT－8800）			
0	0	$\varsigma^{\circ} 0$	20.1	20＇ 1	\llcorner	80°	I＇tL	0	$60^{\circ} \mathrm{I}$	80.1	8	L0\％	て＇0L	0	$60^{\circ} \mathrm{I}$	$60^{\circ} \mathrm{I}$	8	\＆0＇0	$\varepsilon \angle L$	zz＇0	S0＇ 1	$90^{\circ} 1$	\llcorner	m！${ }^{\text {en }}$ V	
			（8L＇T－z90）	（LL＇T－¢9\％0）					（90 ${ }^{\circ}-88^{\circ} 0$ ）	（90． $1-88^{\circ} 0$ ）					（01\％－98＊）	（ $20{ }^{\circ} \mathrm{I}-988^{\circ} 0$ ）					（zL＇T－z90）	（t9 ${ }^{\text {IT－59 }}$		еэ！	
100	$\stackrel{1}{ }{ }^{\prime}$	げ0	S0＇I	S0＇1	\llcorner	0	0	$9 \downarrow^{\circ} 0$	960	960	sı	100	L＇ε	$1 \varepsilon^{\prime} 0$	L60	960	II	S0．0	L＇6	$9 \varepsilon^{\circ} 0$	£0＇ 1	£0＇ 1	\llcorner	－ıauv	
									（0t＇I－6L0）	（LでさーIT0）					（68．1－z80）	（Lて＇I－z6＊）					（0t＇r－zs．0）	（0ヵ゙ $1-2 c^{\circ} 0$ ）			งบว
0	0	260	L60	L60	\dagger	L0＇0	L＇zs	S00	$50^{\circ} \mathrm{I}$	80°	\llcorner	L0＇0	$\varepsilon ゙ L t$	$90^{\circ} 0$	L0＇I	$80^{\circ} \mathrm{I}$	6	0	0	\＄60	98°	98°	ς	2do．ng	－п̣uoว
				（¢9 ${ }^{\circ} \mathrm{I}$－29\％）					（8でITSS ${ }^{\circ}$ ）	（zでィ－z90）					（sでィ－6to						（66．－TIS ${ }^{\text {a }}$ ）	（ $2 L^{\prime} \mathrm{T}-\mathrm{LS}{ }^{\circ} 0$ ）			
0	0	$88^{\circ} 0$	$00^{\prime} \mathrm{I}$	00^{\prime}	r	$90^{\circ} 0$		$z^{\prime} 0$	E80	260	ε	L0＇0	86ε	$61^{\circ} 0$	$6 L^{\circ} 0$	$\angle 80$	ε	$80^{\circ} 0$	て＇z\＆	£ $z^{\prime} 0$	660	660	ح	SN	
			（LIでİ「0）	（LI＇z－IE゙0）					（LL＇T－で「0）	（⿺𠃊⿳－でくしゃ）											（ $L^{\prime} \cdot 1-\Sigma \varepsilon^{\prime} 0$ ）	（ $¢ L^{\prime}-1-\varepsilon \varepsilon^{\prime} 0$ ）		1201	
0	0	$65^{\circ} 0$	280	280	乙	$15^{\circ} 0$	to6	0	290	68°	τ	でっ	808	$10^{\circ} 0$	$8 L^{\circ} 0$	260	ε	0	0	$88^{\circ} 0$	$9 L^{\circ} 0$	$9 L^{\circ} 0$	ح	－unlo Λ	
																								poseq	
			（＋どJ－9L＇0）	（ $+\varepsilon^{\prime} \mathrm{I}^{\prime}-9 L^{\circ} \mathrm{O}$ ）					（ $\mathrm{IF}^{\circ} \mathrm{T}-\mathrm{L8} 8^{\circ}$ ）	（ $60^{\circ} \mathrm{I}-26{ }^{\circ} \mathrm{O}$ ）					（ + で「－060）	（ $¢ 1 \Gamma^{\prime}-\varepsilon 60^{\circ} 0$						（68．${ }^{\prime}-08{ }^{\circ} 0$ ）		uо！	
0	0	160	$10^{\prime} 1$	$10^{\circ} 1$	\llcorner	200	z＇0t	L0＇0	00^{\prime}	00^{\prime}	$\varepsilon 1$	\＆00	でıs	£0＊	50.1	20＇1	${ }^{1}$	0	0	$18^{\circ} 0$	S0＇I	S0 ${ }^{\text {I }}$	\llcorner	${ }^{-\mathrm{E}} \mathrm{Hndo}_{\text {d }}$	
			（Et＇T－¢8．0）	（18．1－580）												（0¢ ${ }^{\text {I }}$－zo＇t）						（98\％－L80）		poseq	ә．．nos
＋0， 0	6 Sz	2z\％	$60^{\circ} \mathrm{I}$	90°	8	$80^{\circ} 0$	†19	0	てど1	LI＇I	$\varepsilon 1$	80°	665	0	$92^{\circ} \mathrm{I}$	sit	$\varepsilon 1$	I＇0	tt	$80^{\circ} 0$	81°	$60^{\circ} \mathrm{I}$	6		${ }^{\text {o．nuo }}$
			（0ع． $\left.1-z 8^{\circ} 0\right)$	（0¢＇ $1-2800$ ）					（sctionot）						（sctionto）						（6t＇T－z80）	（98．1－880）			
0	0	L900	$\varepsilon^{0} \mathrm{t}$	£0＇ 1	01	＇0	£ z9	0	ちでし	81°	\dagger	$\mathrm{H}^{\circ} \mathrm{O}$	L＇19	0	zて＇I	LI＇I	\dagger	$90^{\circ} 0$	92	で0	$0{ }^{\text {T }}$	L0＇I	01	SN	
										（00 $\left.{ }^{\circ}-\varepsilon^{-\varepsilon} \iota^{\circ} 0\right)$															
					I	100	961	$6 \mathrm{Z}^{\circ} 0$	S80	\＄80	\dagger						I						1	X！${ }^{1}$	
					1						1						1						I	уәи	
			（ + を＇－¢880）	（ $\left.+\varepsilon^{\prime} \mathrm{I}^{\prime}-\varepsilon 8^{\circ} 0\right)$					（sc．$\left.{ }^{-5}-58^{\circ} 0\right)$	（sて＇I－S6 ${ }^{\circ}{ }^{\circ}$ ）					（sع ${ }^{\circ} 1+88^{\circ} 0$ ）	（9で1－6600）					（0t＇T－580）	（ $0 \downarrow^{\prime} \mathrm{I}-\mathrm{S} 8^{\circ} \mathrm{O}$ ）		วงวบบฺว	
0	0	580	$90^{\circ} \mathrm{I}$	$90^{\circ} \mathrm{I}$	τ	200	I＇$¢$	${ }^{\circ} 0$	$\angle 0^{\prime} \mathrm{I}$	$60^{\circ} \mathrm{I}$	τ	200	\＆ 09	\＃0	$90^{\circ} \mathrm{I}$	$80^{\circ} \mathrm{I}$	乙	0	0	ss ${ }^{\circ}$	$60^{\circ} \mathrm{I}$	$60^{\circ} \mathrm{I}$	乙	u＊$_{\text {H }}$	
					1						1						1						1	गฺ¢¢	
																								แอง	
										（ $\left.\downarrow \varepsilon^{\prime} I^{-\varepsilon} \Sigma^{\circ} \cdot 0\right)$					（09 ${ }^{\text {I }}$									－－ı．ouv	
					I	0	0	$9 L^{\circ} 0$	660	660	乙	$1{ }^{\circ} 0$	＋662	$\varepsilon \chi^{\prime} 0$	$-9+0) 98.0$	960	τ						1	－ueo！yv	
			（06 ¢－0z ${ }^{\circ}$ ）	（ $66 \mathrm{~T}-\mathrm{E} \cdot 0)$					（St＇I－LL＇0）	（02＇T－88＊0）					（05－5－180）	（615－88＊）					（ $\left.¢ ¢ \sim-8 z^{\circ} 0\right)$			uels	S！
$\varepsilon{ }^{\prime \prime}$	I＇$¢ 9$	L0＇0	$0 \mathrm{I}^{\circ}$	$6 L^{\circ} 0$	ε	210	${ }^{1} 69$	0	$90^{\circ} \mathrm{I}$	$\varepsilon_{0}{ }^{1}$	\llcorner	210	\＆＇99	0	$0 \mathrm{I}^{\circ} \mathrm{I}$	20.1	8	＋80	t＇rs	I＇0	$00^{\circ} \mathrm{I}$	$\varepsilon L^{\circ} 0$	\dagger	－๒วneว	－эบич
			（91＇－－zs．0）	（91． $1-2 s^{\circ} 0$ ）					（ぃ「－でく ${ }^{\text {a }}$						（ $20{ }^{\circ}-69^{\circ} 0$ ）	（z0＇1－6900）					（8800－LE0）	（88．0－LE．0）			
0	0	$85^{\circ} 0$	$8 L^{\circ} 0$	$8 L^{\circ} 0$	\dagger	＋0， 0	L＇8t	$90^{\circ} 0$	680	88°	8	0	0	$\angle 8.0$	＋80	＋80	\dagger	0	0	$\varepsilon 60$	LS 0	$\angle S^{\circ} 0$	\dagger	${ }^{\text {sod }}$	
0	0	66°	$\begin{gathered} \left(8 t^{\prime}-\varepsilon \varsigma^{\circ} 0\right) \\ 88^{\circ} 0 \end{gathered}$	$\begin{gathered} \left(8 t^{\prime}-\varepsilon \varepsilon \zeta^{\circ}\right) \\ 88^{\circ} 0 \end{gathered}$	ε	0	0	¢60	$\begin{gathered} \left(\varsigma \varepsilon^{\prime} I-\varepsilon 6^{\circ} 0\right) \\ 2 I^{\prime} I \end{gathered}$	$\begin{gathered} \left(\varsigma \varepsilon^{\prime}-1-\varepsilon 6 \cdot 0\right) \\ \tau \cdot 1 \end{gathered}$	9	0	0	S60	$\begin{gathered} \left(9 S^{\prime} I-S 6^{\circ} 0\right) \\ z z^{\prime} I \end{gathered}$	$\begin{gathered} \left(9 S^{\prime} \mathrm{I}-\mathrm{S} 6^{\circ} 0\right) \\ \tau z^{\prime} \mathrm{I} \end{gathered}$	\dagger	LI＇0	¢＇IE	2z＇0	$\begin{gathered} \left(18^{\prime} I-I \vdash^{\prime} 0\right) \\ 98^{\prime} 0 \end{gathered}$	$\begin{gathered} \left(s s^{\prime}-9 s^{\prime} 0\right) \\ \varepsilon_{6} 6^{\circ} 0 \end{gathered}$	s	a．d	${ }^{\text {［－Snned }}$
			（IでT－880）	（1で1－88＊0）					（81－T－560）	（015－L6\％）					（で「－960）	（で「「－L600）					（¢で1－880）	（ \downarrow で1－68＊0）			
0	0	8.0	£0＇ 1	\＆0 ${ }^{\circ}$	61	500		0	$90^{\circ} \mathrm{I}$	＋0， 1	1ε	S0\％	¢＇8s	0	$80^{\circ} \mathrm{I}$	＋0， 1	62	10.0	9	$88^{\circ} 0$	S0 ${ }^{\circ}$	S0＇1	$0 z$		гегло
					${ }^{\circ} \mathrm{N}$						${ }^{\circ} \mathrm{N}$						${ }^{\circ} \mathrm{N}$						${ }^{\circ} \mathrm{N}$		
ZL	zI	पd	（ID \％\％6）צо рәрои шориеу วนเรsวววу	（ID \％\％6）уо เррош pox！s	$\begin{gathered} \text { sэ! } \\ \text {-pmis } \end{gathered}$	zL	zI	पd	（ID \％\％6）צ๐ ןэрои шориеу 	（ID \％\％6）уо ppoun pexty	$\begin{gathered} \text { sэ! } \\ \text {-pmis } \end{gathered}$	zL	zI	पd	（ID \％\％6）บо ןpout wopuey ข๐ร̊亿zо．эән	（ID \％\％6）чо ppou poxid	$\begin{gathered} \mathrm{s} 9! \\ -\mathrm{pm} \end{gathered}$	zL	乙I	पd	（ID $\%$ ¢6）צ๐ ןэрои шориеу эо®亿zouон	（ID \％\％ 6 ）уо ppoun pexty	$\begin{gathered} \text { sə! } \\ \text {-pmis } \end{gathered}$		qns

0	0	\＆to			9	to 0	885	90°		$\begin{gathered} \left(60^{\prime} 1\right. \\ -280)^{\prime} 10^{\prime} 1 \end{gathered}$	†	¢＇9¢	z10			τ							I	ppesnf	
						0	2＇8	LE0			\llcorner	でけ	10			8		0	0	$9{ }^{\circ}$			t	possn！py	$\underbrace{\substack{\text { puw }}}_{\text {－1snipy }}$
£20	s¢z	sto	$\begin{gathered} \left(L z z^{\circ}\right) \\ \left.-z i 0^{\circ}\right) \\ 00^{\circ} \end{gathered}$	$\begin{aligned} & (25 \cdot 10 \\ & -2900 \\ & \varepsilon 990 \end{aligned}$	τ	to 0	I＇¢s	210			ε	69	L0＇0		$\begin{gathered} \left(88^{1} 1\right. \\ -\angle L 0) \leqslant 60^{\circ} \end{gathered}$	τ		sto	「¢¢	zzo		$\begin{gathered} (8 \varepsilon \cdot 1 \\ \left.-6 \varepsilon_{0}\right)\left\{99^{0}\right. \end{gathered}$	τ	elsy	
0	0	S60			τ	0	0	2to			ς	0	\＆t＇0			s		0	0	560			τ	вวฺวшท	
2\％0	81	Lz＇0			τ	90°	t＇$\varepsilon 9$	40°	${ }^{-(580)}$		ε	\＆＇99	s0．0			ε							I	odomı	¢ıü
					I						।					।							1	．1．ว）	
0	0	$\angle 80$		$\begin{aligned} & \left(6 E^{\prime}{ }^{(620)}\right. \\ & -690 \end{aligned}$	†	0	0	$8{ }^{\circ} 0$	$\begin{gathered} (\mathrm{Lz})^{\prime} 1 \\ -660 \mathrm{zl}^{\prime} \end{gathered}$	$\begin{gathered} \left(6 z^{\prime}\right) 1 \\ \left.-6 I^{\prime}\right) \end{gathered}$	\llcorner	0	$\varepsilon ¢^{\circ}$			9		0	0	$\angle 90$		$\begin{gathered} \left(8 z^{\prime}, 1\right. \\ \left.-0 \varepsilon_{0}\right)\left(99^{\circ}\right. \end{gathered}$	ε	$\begin{gathered} \text { poseq } \\ \text { upen } \\ \text { ullndod } \end{gathered}$	
					I	zio	L＇t9	90°	$\begin{gathered} \left(I t^{\prime} 1\right. \\ \left.-z s_{0}\right) 980^{\prime} \end{gathered}$		ε	0	$18^{\circ} 0$			ε							I	$\begin{gathered} \text { paseq } \\ \text { \|enldso } \end{gathered}$	$\begin{gathered} \text { د.anos } \\ \text { ponluo } \end{gathered}$
					I	$\varepsilon 1^{\circ}$	809	S00			t	1 28	10°			τ							I	SN	
					I						1					1							I		
					1						I					1							I	$\begin{gathered} \text { ossurup } \\ \text { uFi } \end{gathered}$	
											1					1							I	эчм	
					I						I	0	1ヵ0		$\begin{gathered} (161,1 \\ -6 L^{(16)}\left\{\mathcal{Z}^{\prime} \mid\right. \end{gathered}$	τ							I		
0	0	$\angle 60$	$\begin{aligned} & \left(+0^{\circ}+0\right. \\ & \left.-90^{2} 0\right) \\ & 20^{\circ} \end{aligned}$		τ	$10^{\circ} 0$	s＇61	62^{0}			ε	L＇̇l	$2 \varepsilon^{\circ} 0$	$\begin{gathered} \left(6 \tau^{\prime} 1\right. \\ -880) \\ 08_{0}^{\prime} \end{gathered}$	－ 580	ε							1	uelsenep	
					I	$1{ }^{\text {¢ }}$	28	0		$\begin{gathered} \left(9 p^{\prime} .1\right. \\ -2800^{\prime} 60^{\prime} \end{gathered}$	ε					1							I	${ }^{\text {sod }}$	
					1	0	0	$\iota^{\circ} 0$			ε					1							I	${ }^{\text {a．d }}$	$\begin{gathered} \text { smpes } \\ \text { sumb } \\ \text { Insurd } \\ \text {-oupe } \end{gathered}$
0	0	\＆to		$\begin{aligned} & (\varepsilon 8 \cdot 1 \\ & -480) \\ & -460 \end{aligned}$	9	10.0	t＇6r	91°	$\begin{gathered} \left.\left(1 z^{\prime}\right]^{\prime}\right) \\ -\varepsilon 60090^{\prime} \end{gathered}$		II	200	¢．9¢	z10	$\begin{gathered} \left(0 z^{\prime} 1\right. \\ -060)^{\prime}+0^{\prime} \end{gathered}$		01	$66^{\circ} 0$	t＇or	Sio		$\begin{gathered} (8.1 .1 \\ \left.-2 s^{\circ}\right)<60<6 \end{gathered}$	s		

[^1]

Figure 1. Flowchart of Reviewing Process for Inclusion of Eligible Studies in Meta-Analysis
et al., 2010; Jelonek et al., 2010; Ming-Shiean et al., 2010; Romanowicz et al., 2010; Santos et al., 2010; Sterpone et al., 2010b; Zipprich et al., 2010; Liu et al., 2011a; Roberts et al., 2011; Hussien et al., 2012; Al Mutairi et al., 2013; Przybylowska-Sygut et al., 2013b; Ding et al., 2014; Luo et al., 2014; McCullough et al., 2014; Ramadan et al., 2014; Sapkota et al., 2014; Shadrina et al., 2014a; Smolarz et al., 2014; Macias-Gomez et al., 2015). Thirty-one studies for $\operatorname{Arg} 194 \operatorname{Trp}$ (14,381 cases and 15.036 controls), 10 for Arg280His (7,716 cases and 7,370 controls) and 52 for $\operatorname{Arg} 399 \mathrm{Gln}$ (31,036 cases and 35,994 controls) included in this meta-analysis. several studies (Duell et al., 2001; Romanowicz-Makowska et al., 2007; Sterpone et al., 2010a; Smith et al., 2011; Lee et al., 2014) were excluded because of common studied population with some others (Pachkowski et al., 2006a; Smith et al., 2008; Sobczuk et al., 2009b; Sterpone et al., 2010c). One publication (Consortium, 2006) carried out analysis of nine different studies. Of these nine studies, PBSC and US 3-state had common studied population with Zhang et al (2006a), and Seoul had common studied
population with Kim et al (2002a). Because detailed characteristic of nine studies was not available, the single measure of association reported by the Breast Cancer Association Consortium for homozygote and heterozygote genetic models was considered for analysis. Given that, no reported measure of association for dominant and recessive genetic model as well as post/pre-menopause status in the Breast Cancer Association Consortium study, OR of mentioned models was recruited from Zhang and Kim's studies. Detailed characteristics of included studies are presented in supplementary appendix (contact author).

Arg194Trp

Overall, no significant association was detected between $\operatorname{Arg} 194 \mathrm{Tr}$ p polymorphism of XRCC1 gene and breast cancer in four genetic models. Based on menopausal status, results showed a protective effect of polymorphism on risk of breast cancer in post-menopauses only homozygote model (Trp/Trp vs. Arg/Arg: OR=0.57 [0.37-0.88]) (Figure 2). In subgroup analysis, studies with hospital source of control showed significant association

Figure 2. Fixed and Random Effect Model Meta-Analysis of XRCC1 Arg194Trp Polymorphism for Trp/Trp vs. Arg/ Arg (Homozygote) Genetic Models and Risk of Breast Cancer in Postmenopausal Woman. The Effect Size is Odds Ratio.

Figure 3. Fixed and Random Effect Model Meta-Analysis of XRCC1 Arg280His Polymorphism for His/Arg vs. Arg/ Arg (Heterozygote) Genetic Models and Risk of Breast Cancer Stratified by Source of Control. The Effect Size is Odds Ratio.

Figure 4. Fixed and Random Effect Model Meta-Analysis of XRCC1 Arg399Gln Polymorphism for Gln/Gln vs. Arg/ Arg (Homozygote) Genetic Models and Risk of Breast Cancer. The Effect Size is Odds Ratio.
in heterozygote and dominant models. Results of analysis for Arg194Trp polymorphism are provided in Table 1.

Arg280His

Results display no association between Arg280His polymorphism and breast cancer in general analysis and pre/post-menopausal women. The only relationship found in subgroup analysis was detected in studies with population-based source of control in heterozygote model (Figure 3). Table 2 present pooled ORs for relationship between Arg 280 His polymorphism and breast cancer.

Arg399Gln

In overall analysis, there was significant association of $\operatorname{Arg} 399 \mathrm{Gln}$ polymorphism with breast cancer in homozygote (Gln/Gln vs. Arg/Arg: OR=1.21 [1.101.34]) , dominant (Gln/Gln and Gln/Arg vs. Arg/Arg: $\mathrm{OR}=1.09$ [1.03-1.15]) and recessive (Gln/Gln vs. Gln/ Arg and $\mathrm{Arg} / \mathrm{Arg}$: OR=1.21 [1.09-1.35]) genetic models
(Figure 4-6). Stratification analysis base on menopausal status revealed association only in post-menopauses in homo and heterozygote models. Subgroup analysis showed significant association in Caucasians, studies with hospital-based source of control and, Asian and American (only heterozygote model) populations. Detailed pooled ORs are presented in Table 3. No ppublication bias was detected using Egger's regression test. Figures 7 to 9 present the funnel plots for Arg280His, Arg 194Trp and Arg399Gln.

Discussion

Our study demonstrated that certain categories of women have higher risk of breast cancer when they carry one of the XRCC1 gene polymorphism (Arg399Gln, Arg280His, or Arg194Trp). The Arg399Gln gene polymorphism has been associated with breast cancer in many studies with different magnitude of risk in different population or categories of patients. As we pooled all the

Figure 5. Fixed and Random Effect Model Meta-Analysis of XRCC1 Arg399Gln Polymorphism for Gln/Gln and Gln/ Arg vs. Arg/Arg (Dominant) Genetic Models and Risk of Breast Cancer. The Effect Size is Odds Ratio.
individual studies, we compare our result with previous meta-analysis. The last metal analysis of Arg399Gln and risk of breast cancer was done by Bu et al (2014) that included 18 case control studies and just pooled the studies for American population.Their results were similar to our result except that they were able to detect statistically significant association just for certain genetic model (dominant and additive). Another meta-analysis by Wu K. included 44 case and control studies and their finding was similar to our study (they report association under recessive and dominant model) (Wu et al., 2011).

Meta-analysis of the Arg280His gene polymorphism has already been reported in the literature. The more recent
meta-analysis reporting on Arg280His polymorphism and breast cancer was published in 2009 (Huang et al., 2009). The study included 37 case controls and examined all genetic models. Their find is consistent with our study result as general (no association) however, in our finding we observed case of association when subgroup analysis were done and when the subgroup included studies that that the source of controls was population based. The discrepancy seen between our result and Huang et al (2009) may be the fact that they did not performed subgroup analysis based on the source of control.

For the Arg194Trp Polymorphism of XRCC1 gene we found two previous meta-analyses one by Huang et al

Figure 6. Fixed and Random Effect Model Meta-Analysis of XRCC1 Arg399Gln Polymorphism for Gln/Gln vs. Gln/ Arg and $\mathrm{Arg} / \mathrm{Arg}$ (Recessive) Genetic Models and Risk of Breast Cancer. The Effect Size is Odds Ratio.

Figure 7. Funnel Plot of Arg194Trp Polymorphism for Trp/Trp and Arg/Trp vs. Arg/Arg (Dominant) Genetic Models with Regression Line Corresponding to the Egger's Regression Test for Funnel-Plot Asymmetry.

Figure 8. Funnel Plot of XRCC1 Arg280His Polymorphism for His/His and His/Arg vs. Arg/Arg for (Dominant) Genetic Models with Regression Line Corresponding to the Egger's Regression Test for Funnel-Plot Asymmetry.

Figure 9. Funnel Plot of XRCC1 Arg399Gln Polymorphism for Gln/Gln and Gln/Arg vs. Arg/Arg (Dominant) Genetic Models with Regression Line Corresponding to the Egger's Regression Test for Funnel-Plot Asymmetry.
(2009) that showed no association between the Arg 194Trp polymorphism and risk of breast cancer and the other one by Feng et al (2014) who pooled the studies for cancer as whole and did not report on breast cancer alone. Feng et al (2014) reported elevated risk of cancer among carriers of this polymorphism. Our result is consistent with Huang Y (2009) when it compares the overall results (no association) however, in subgroup analysis; we found increased risk of breast cancer for carrier of this polymorphism among hospital based case control studies.

In conclusions, the XRCC1 polymorphisms (Arg399Gln, Arg280His, or Arg194Trp) act as background risk for people who are carrier of these polymorphisms. Further individual genetic association studies are needed to further our understanding of breast cancer risk among carrier of these polymorphisms.

References

Al Mutairi FM, Alanazi M, Shalaby M, et al (2013). Association of XRCC1 gene polymorphisms with breast cancer susceptibility in Saudi patients. Asian Pac J Cancer Prev, 14, 3809-13.
Ali MF, Meza JL, Rogan EG, et al (2008). Prevalence of BER gene polymorphisms in sporadic breast cancer. Oncol Rep, 19, 1033-8.
Armstrong K, Eisen A, Weber B (2000). Assessing the risk of breast cancer. NEJM, 342, 564-71.
Bertwistle D, Ashworth A (1998). Functions of the BRCA1 and BRCA2 genes. Curr Opin Genetics Dev, 8, 14-20.
Brewster AM, Jorgensen TJ, Ruczinski I, et al (2006). Polymorphisms of the DNA repair genes XPD (Lys751Gln) and XRCC1 (Arg399Gln and Arg194Trp): relationship to breast cancer risk and familial predisposition to breast cancer. Breast Cancer Res Treat, 95, 73-80.
Bu D, Tomlinson G, Lewis CM, et al (2006). An intronic polymorphism associated with increased XRCC1 expression, reduced apoptosis and familial breast cancer. Breast Cancer Res Treat, 99, 257-65.
Bu T, Liu L, Sun Y, et al (2014). XRCC1 Arg399Gln polymorphism confers risk of breast cancer in American population: a meta-analysis of 10846 cases and 11723 controls. PLoS One, 9, e86086.
Chacko P, Rajan B, Joseph T, et al (2005). Polymorphisms in

DNA repair gene $\mathrm{XRCC1}$ and increased genetic susceptibility to breast cancer. Breast Cancer Res Treat, 89, 15-21.
Consortium BCA (2006). Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst, 98, 1382-96.
Costa S, Pinto D, Pereira D, et al (2007). DNA repair polymorphisms might contribute differentially on familial and sporadic breast cancer susceptibility: a study on a Portuguese population. Breast Cancer Res Treat, 103, 209-17.
Deligezer U, Dalay N (2004). Association of the XRCC1 gene polymorphisms with cancer risk in Turkish breast cancer patients. Exp Mol Med, 36, 572-5.
Ding P, Yang Y, Cheng L, et al (2014). The relationship between seven common polymorphisms from five DNA repair genes and the risk for breast cancer in northern Chinese women. PLoS One, 9, e92083.
Duell EJ, Millikan RC, Pittman GS, et al (2001). Polymorphisms in the DNA repair gene XRCC1 and breast cancer. Cancer Epidemiol Biomarkers Prev, 10, 217-22.
Dufloth RM, Costa S, Schmitt F, et al (2005). DNA repair gene polymorphisms and susceptibility to familial breast cancer in a group of patients from Campinas, Brazil. Genet Mol Res, 4, 771-82.
Feng YZ, Liu YL, He XF, et al (2014). Association between the XRCC1 Arg 194Trp polymorphism and risk of cancer: evidence from 201 case-control studies. Tumour Biol, 35, 10677-97.
Figueiredo JC, Knight JA, Briollais L, et al (2004). Polymorphisms XRCC1-R399Q and XRCC3-T241M and the risk of breast cancer at the Ontario site of the Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev, 13, 583-91.
Försti A, Angelini S, Festa F, et al (2004). Single nucleotide polymorphisms in breast cancer. Oncol Rep, 11, 917-22.
Han J, Hankinson SE, De Vivo I, et al (2003). A prospective study of XRCC1 haplotypes and their interaction with plasma carotenoids on breast cancer risk. Cancer Res, 63, 8536-41.
Huang C-S, Chen J-J, Yang S-Y, et al (2004). Breast Cancer Risk Associated with Genotypic Polymorphism of Oxidative DNA Damage Repair Genes-A Multigenic Study of Base Excision Repair and Transcription-Coupled Repair in Cancer Susceptibility. J Genet Mole Biol, 15, 116-36.
Huang Y, Li L, Yu L (2009). XRCC1 Arg399Gln, Arg 194Trp and Arg280His polymorphisms in breast cancer risk: a meta-analysis. Mutagenesis, 24, 331-9.
Hussien YM, Gharib AF, Awad HA, et al (2012). Impact of DNA repair genes polymorphism (XPD and XRCC1) on the risk of breast cancer in Egyptian female patients. Mol Biol Rep, 39, 1895-901.
Jakubowska A, Gronwald J, Menkiszak J, et al (2010). BRCA1-associated breast and ovarian cancer risks in Poland: no association with commonly studied polymorphisms. Breast Cancer Res Treat, 119, 201-11.
Jelonek K, Gdowicz-Klosok A, Pietrowska M, et al (2010). Association between single-nucleotide polymorphisms of selected genes involved in the response to DNA damage and risk of colon, head and neck, and breast cancers in a Polish population. J Appl Genet, 51, 343-52.
Key TJ, Verkasalo PK, Banks E (2001). Epidemiology of breast cancer. Lancet Oncol, 2, 133-40.
Kim S-U, Park SK, Yoo K-Y, et al (2002a). XRCC1 genetic polymorphism and breast cancer risk. Pharmacogenet Genomics, 12, 335-8.
Kim SU, Park SK, Yoo KY, et al (2002b). XRCC1 genetic polymorphism and breast cancer risk. Pharmacogenetics, 12, 335-8.

Kipikasova L, Wolaschka T, Bohus P, et al (2008). Polymorphisms of the XRCC1 and XPD genes and breast cancer risk: a case-control study. Pathol Oncol Res, 14, 131-5.
Lee E, Levine EA, Franco VI, et al (2014). Combined genetic and nutritional risk models of triple negative breast cancer. Nutr Cancer, 66, 955-63.
Lichtenstein P, Holm NV, Verkasalo PK, et al (2000). Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. NEJM, 343, 78-85.
Liu L, Yuan P, Liu L, et al (2011a). A functional $-77 \mathrm{~T}>\mathrm{C}$ polymorphism in XRCC1 is associated with risk of breast cancer. Breast Cancer Res Treat, 125, 479-87.
Liu L, Yuan P, Wu C, et al (2011b). A functional-77T>C polymorphism in XRCC1 is associated with risk of breast cancer. Breast cancer Res Treat, 125, 479-87.
Loizidou MA, Michael T, Neuhausen SL, et al (2008). Genetic polymorphisms in the DNA repair genes XRCC1, XRCC2 and XRCC3 and risk of breast cancer in Cyprus. Breast Cancer Res Treat, 112, 575-9.
Luo H, Li Z, Qing Y, et al (2014). Single nucleotide polymorphisms of DNA base-excision repair genes (APE1, OGG1 and XRCC1) associated with breast cancer risk in a Chinese population. Asian Pac J Cancer Prev, 15, 1133-40.
Macias-Gomez NM, Peralta-Leal V, Meza-Espinoza JP, et al (2015). Polymorphisms of the XRCC1 gene and breast cancer risk in the Mexican population. Fam Cancer, 14, 349-54.
McCullough LE, Santella RM, Cleveland RJ, et al (2014). Polymorphisms in DNA repair genes, recreational physical activity and breast cancer risk. Int J Cancer, 134, 654-63.
Metsola K, Kataja V, Sillanpaa P, et al (2005). XRCC1 and XPD genetic polymorphisms, smoking and breast cancer risk in a Finnish case-control study. Breast Cancer Res, 7, 987-97.
Ming-Shiean H, Yu JC, Wang HW, et al (2010). Synergistic effects of polymorphisms in DNA repair genes and endogenous estrogen exposure on female breast cancer risk. Ann Surg Oncol, 17, 760-71.
Mitra AK, Singh N, Singh A, et al (2008). Association of polymorphisms in base excision repair genes with the risk of breast cancer: a case-control study in North Indian women. Oncol Res, 17, 127-35.
Moullan N, Cox DG, Angele S, et al (2003). Polymorphisms in the DNA repair gene XRCC1, breast cancer risk, and response to radiotherapy. Cancer Epidemiol Biomarkers Prev, 12, 1168-74.
Pachkowski BF, Winkel S, Kubota Y, et al (2006a). XRCC1 genotype and breast cancer: functional studies and epidemiologic data show interactions between XRCC1 codon 280 His and smoking. Cancer Res, 66, 2860-8.
Pachkowski BF, Winkel S, Kubota Y, et al (2006b). XRCC1 genotype and breast cancer: functional studies and epidemiologic data show interactions between XRCC1 codon 280 His and smoking. Cancer Res, 66, R2860-8.
Patel AV, Calle EE, Pavluck AL, et al (2005a). A prospective study of XRCC1 (X-ray cross-complementing group 1) polymorphisms and breast cancer risk. Breast Cancer Res, 7, 1168-73.
Patel AV, Calle EE, Pavluck AL, et al (2005b). A prospective study of XRCC1 (X-ray cross-complementing group 1) polymorphisms and breast cancer risk. Breast Cancer Res, 7, R1168-73.
Patel RK, Trivedi AH, Arora DC, et al (1997). DNA repair proficiency in breast cancer patients and their first-degree relatives. Int J Cancer, 73, 20-4.
Przybylowska-Sygut K, Stanczyk M, Kusinska R, et al
(2013a). Association of the Arg194Trp and the Arg399Gln polymorphisms of the XRCC1 gene with risk occurrence and the response to adjuvant therapy among Polish women with breast cancer. Clin Breast Cancer, 13, 61-8.
Przybylowska-Sygut K, Stanczyk M, Kusinska R, et al (2013b). Association of the Arg194Trp and the Arg399Gln polymorphisms of the XRCC1 gene with risk occurrence and the response to adjuvant therapy among Polish women with breast cancer. Clin Breast Cancer, 13, 61-8.
Ramadan RA, Desouky LM, Elnaggar MA, et al (2014). Association of DNA repair genes XRCC1 (Arg399Gln), (Arg194Trp) and XRCC3 (Thr241Met) polymorphisms with the risk of breast cancer: a case-control study in Egypt. Genetic Testing \& Molecular Biomarkers, 18, 754-60.
Roberts MR, Shields PG, Ambrosone CB, et al (2011). Single-nucleotide polymorphisms in DNA repair genes and association with breast cancer risk in the web study. Carcinogenesis, 32, 1223-30.
Romanowicz-Makowska H, Smolarz B, Kulig A (2007). [Polymorphisms in XRCC1 and ERCC4/XPF DNA repair genes and associations with breast cancer risk in women]. Pol Orthop Traumatol, 22, 200-3.
Romanowicz H, Smolarz B, Baszczynski J, et al (2010). Genetics polymorphism in DNA repair genes by base excision repair pathway (XRCC1) and homologous recombination (XRCC2 and RAD51) and the risk of breast carcinoma in the Polish population. Pol J Pathol, 61, 206-12.
Saadat M, Kohan L, Omidvari S (2008). Genetic polymorphisms of XRCC1 (codon 399) and susceptibility to breast cancer in Iranian women, a case-control study. Breast Cancer Res Treat, 111, 549-53.
Sangrajrang S, Schmezer P, Burkholder I, et al (2008). Polymorphisms in three base excision repair genes and breast cancer risk in Thai women. Breast Cancer Res Treat, 111, 279-88.
Santos RA, Teixeira AC, Mayorano MB, et al (2010). DNA repair genes XRCC1 and XRCC3 polymorphisms and their relationship with the level of micronuclei in breast cancer patients. Genet Mol Biol, 33, 637-40.
Sapkota Y, Mackey JR, Lai R, et al (2014). Assessing SNP-SNP interactions among DNA repair, modification and metabolism related pathway genes in breast cancer susceptibility. PLoS One, 8, e64896.
Shadrina AS, Ermolenko NA, Boyarskikh UA, et al (2014a). Polymorphisms in DNA repair genes and breast cancer risk in Russian population: a case-control study. Clin Exp Med, 16, 21-8.
Shadrina AS, Ermolenko NA, Boyarskikh UA, et al (2014b). Polymorphisms in DNA repair genes and breast cancer risk in Russian population: a case-control study. Clin Exp Med, 16, 21-8.
Shen J, Gammon MD, Terry MB, et al (2005). Polymorphisms in XRCC1 modify the association between polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, dietary antioxidants, and breast cancer risk. Cancer Epidemiol Biomarkers Prev, 14, 336-42.
Shen MR, Jones IM, Mohrenweiser H (1998). Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res, 58, 604-8.
Shu XO, Cai Q, Gao YT, et al (2003). A population-based case-control study of the Arg399Gln polymorphism in DNA repair gene XRCC1 and risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 12, 1462-7.
Siegel R, Ma J, Zou Z, et al (2014). Cancer statistics, 2014. CA Cancer J Clin, 64, 9-29.
Silva SN, Moita R, Azevedo AP, et al (2007a). Menopausal age
and XRCC1 gene polymorphisms: role in breast cancer risk. Cancer Detect Prev, 31, 303-9.
Silva SN, Moita R, Azevedo AP, et al (2007b). Menopausal age and XRCC1 gene polymorphisms: role in breast cancer risk. Cancer Detect Prev, 31, 303-9.
Smith TR, Levine EA, Freimanis RI, et al (2008). Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Carcinogenesis, 29, 2132-8.
Smith TR, Levine EA, Perrier ND, et al (2003a). DNA-repair genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev, 12, 1200-4.
Smith TR, Liu-Mares W, Van Emburgh BO, et al (2011). Genetic polymorphisms of multiple DNA repair pathways impact age at diagnosis and TP53 mutations in breast cancer. Carcinogenesis, 32, 1354-60.
Smith TR, Miller MS, Lohman K, et al (2003b). Polymorphisms of XRCC1 and XRCC3 genes and susceptibility to breast cancer. Cancer Lett, 190, 183-90.
Smolarz B, Makowska M, Samulak D, et al (2014). Single nucleotide polymorphisms (SNPs) of ERCC2, hOGG1, and XRCC1 DNA repair genes and the risk of triple-negative breast cancer in Polish women. Tumour Biol, 35, 3495-502.
Sobczuk A, Romanowicz-Makowska H, Fiks T, et al (2009a). XRCC1 and XRCC3 DNA repair gene polymorphisms in breast cancer women from the Lodz region of Poland. Pol J Pathol, 60, 76-80.
Sobczuk A, Romanowicz-Makowska H, Fiks T, et al (2009b). XRCC1 and XRCC3 DNA repair gene polymorphisms in breast cancer women from the Lodz region of Poland. Pol J Pathol, 60, 76-80.
Sterpone S, Cornetta T, Padua L, et al (2010a). DNA repair capacity and acute radiotherapy adverse effects in Italian breast cancer patients. Mutat Res Fund Mol Mech Mut, 684, 43-8.
Sterpone S, Mastellone V, Padua L, et al (2010b). Singlenucleotide polymorphisms in BER and HRR genes, XRCC1 haplotypes and breast cancer risk in Caucasian women. J Cancer Res Clin Oncol, 136, 631-6.
Sterpone S, Mastellone V, Padua L, et al (2010c). Single-nucleotide polymorphisms in BER and HRR genes, XRCC1 haplotypes and breast cancer risk in Caucasian women. J Cancer Res Clin Oncol, 136, 631-6.
Syamala VS, Syamala V, Sreedharan H, et al (2009). Contribution of XPD (Lys751Gln) and XRCC1 (Arg399Gln) polymorphisms in familial and sporadic breast cancer predisposition and survival: an Indian report. Pathol Oncol Res, 15, 389-97.
Thyagarajan B, Anderson KE, Folsom AR, et al (2006). No association between XRCC1 and XRCC3 gene polymorphisms and breast cancer risk: Iowa Women's Health Study. Cancer Detect Prev, 30, 313-21.
Wu K, Su D, Lin K, et al (2011). XRCC1 Arg399Gln gene polymorphism and breast cancer risk: a meta-analysis based on case-control studies. Asian Pac J Cancer Prev, 12, 2237-43.
Zhai X, Liu J, Hu Z, et al (2006). Polymorphisms of ADPRT Val762Ala and XRCC1 Arg399Glu and risk of breast cancer in Chinese women: a case control analysis. Oncol Rep, 15, 247-52.
Zhang Y, Newcomb PA, Egan KM, et al (2006a). Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 15, 353-8.
Zhang Y, Newcomb PA, Egan KM, et al (2006b). Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 15, 353-8.

Zipprich J, Terry MB, Brandt-Rauf P, et al (2010). XRCC1 polymorphisms and breast cancer risk from the New York Site of the Breast Cancer Family Registry: A family-based case-control study. J Carcinog, 9, 4.

[^0]: ${ }^{l}$ Department of Social Medicine, ${ }^{4}$ Department of Genetic, School of Medicine, Shahid Beheshti University of Medical Sciences, ${ }^{3}$ School of Medicine, Tehran University of Medical Sciences, Tehran, ${ }^{2}$ The Collaboration Center of Meta-Analysis Research (ccMETA), Iranian Research Center on Healthy Aging, Sabzevar University of Medical Sciences, Sabzevar, Iran , ${ }^{5}$ Faculty of Health Sciences, Simon Fraser University, BC, Canada. *For correspondence: rmosavi@yahoo.com

[^1]:

