DOI QR코드

DOI QR Code

미생물에 의한 테라헤르츠 메타물질의 공명주파수 변화

Differential Transmission Spectra of Terahertz Metamaterial Resonances for Sensing Microorganisms

  • 박세준 (아주대학교 에너지시스템학과 (물리학과)) ;
  • 안영환 (아주대학교 에너지시스템학과 (물리학과))
  • Park, S.J. (Department of Physics and Department of Energy Systems Research, Ajou University) ;
  • Ahn, Y.H. (Department of Physics and Department of Energy Systems Research, Ajou University)
  • 투고 : 2016.10.06
  • 심사 : 2016.11.08
  • 발행 : 2016.12.25

초록

마이크로 갭을 포함하는 테라헤르츠파 메타물질을 이용하면 공명주파수 근방의 투과 스펙트럼 변화를 관측함으로써, 높은 감도로 마이크로 크기의 곰팡이, 박테리아 등의 미생물을 검출할 수 있다. 공명주파수의 스펙트럼 변화폭은 미생물의 굴절률 및 마이크로 갭에 위치한 미생물의 개수에 크게 의존한다. 테라헤르츠 메타물질을 통해 다양한 미생물들을 검출하였으며, 또한, 세척 과정을 통해 센서의 재사용이 가능함을 보였다. 유한차분 시간영역 전산모사를 이용하여 메타물질 공명주파수의 미생물 개수 및 굴절률 의존성을 확인하고 실험결과를 검증하였다.

Metamaterials operating in the terahertz frequency range show promising potential for use in highly sensitive microbial sensors that are capable of effectively detecting microorganisms in the ambient environment. We were able to detect extremely small numbers of microorganisms by measuring the differential transmission spectra (DTS) of the metamaterial resonances. This was possible because their sizes are on the same scale as the microgaps of the terahertz metamaterials. DTS depend critically on the number of microorganisms placed in the gap area, and their dielectric constant. In addition, these metamaterial microbial sensors are reusable, because the microorganisms can be completely removed by fungicide solution. Finite-difference time-domain simulations successfully reproduce our experimental data.

키워드

참고문헌

  1. S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, "Detection of microorganisms using terahertz metamaterials," Sci. Rep. 4, 4988 (2014).
  2. H. T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O'Hara, and A. J. Taylor, "Electromagnetic metamaterials for terahertz applications," Terahertz Sci. Technol. 1, 42-50 (2008).
  3. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). https://doi.org/10.1038/nature05343
  4. S. J. Park and Y. H. Ahn, "Substrate effects on terahertz metamaterial resonances for various metal thicknesses," J. Korean Phys. Soc. 65, 1843-1847 (2014). https://doi.org/10.3938/jkps.65.1843
  5. S. J. Park, S. W. Jun, A. R. Kim, and Y. H. Ahn, "Terahertz metamaterial sensing on polystyrene microbeads: Shape dependence," Opt. Mater. Express 5, 2150-2155 (2015). https://doi.org/10.1364/OME.5.002150
  6. S. J. Park, B. H. Son, S. J. Choi, H. S. Kim, and Y. H. Ahn, "Sensitive detection of yeast using terahertz slot antennas," Opt. Express 22, 30467-30472 (2014). https://doi.org/10.1364/OE.22.030467
  7. J. F. O'Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, "Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations," Opt. Express 16, 1786-1795 (2008). https://doi.org/10.1364/OE.16.001786