DOI QR코드

DOI QR Code

Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells

  • Ahmadi, Isa (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan, University Blvd) ;
  • Najafi, Mahsa (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan, University Blvd)
  • 투고 : 2016.05.17
  • 심사 : 2016.11.15
  • 발행 : 2016.12.10

초록

In this paper, the 3D stress state and inter-laminar stresses in a rotating thin laminated cylinder shell are studied. The thickness of the cylinder is supposed to be thin and it is made of laminated composite material and can have general layer stacking. The governing equations of the cylindrical shell are obtained by employing the Layerwise theory (LWT). The effect of rotation is considered as rotational body force which is induced due to the rotation of the cylinder about its axis. The Layerwise theory (LWT), is used to discrete the partial differential equations of the problem to ordinary ones, in terms of the displacements of the mathematical layers. By applying the Free boundary conditions the solution of the governing equations is completed and the stress state, the inter-laminar stresses, and the edge effect in the rotating cylindrical shells are investigated in the numerical results. To verify the results, LWT solution is compared with the results of the FEM solution and good agreements are achieved. The inter-laminar normal and shear stresses in rotating cylinder are studied and effects of layer stacking and angular velocity is investigated in the numerical results.

키워드

참고문헌

  1. Afshin, M., Sadighi, M. and Shakeri, M. (2010), "Free-edge effects in a cylindrical sandwich panel with a flexible core and laminated composite face sheets", Mech. Compos. Mater., 46(5), 539-554. https://doi.org/10.1007/s11029-010-9170-x
  2. Ahmadi, I. (2016), "Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation", Struct. Eng. Mech., Int. J., 57(4), 733-762. https://doi.org/10.12989/sem.2016.57.4.733
  3. Alankaya, V. and Oktem, A.S. (2016), "Static analysis of laminated and sandwich composite doubly-curved shallow shells", Steel Compos. Struct., Int. J., 20(5), 1043-1066. https://doi.org/10.12989/scs.2016.20.5.1043
  4. Asgari, M. and Akhlaghi, M. (2011), "Thermo-mechanical analysis of 2d-fgm thick hollow cylinder using graded finite elements", Adv. Struct. Eng., 14(6), 1059-1073. https://doi.org/10.1260/1369-4332.14.6.1059
  5. Basar, Y., Itskov, M. and Eckstein, A. (2000), "Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements", Comput. Method. Mech. Eng., 185(2), 367-397. https://doi.org/10.1016/S0045-7825(99)00267-4
  6. Byron Pipes, R. and Pagano, N.J. (1970), "Interlaminar stresses in composite laminates under uniform axial extension", J. Compos. Mater., 4(4), 538-548. https://doi.org/10.1177/002199837000400409
  7. Ealias, J., Lalmoni, J.J.M. and Mattam, J.J. (2013), "Study of inter-laminar shear stress of composite structures", Int. J. Emerg. Technol. Adv. Eng., 3(8), 543-552.
  8. Edfawy, E. (2016), "Thermal stresses in a non-homogeneous orthotropic infinite cylinder", Struct. Eng. Mech, Int. J., 59(5), 841-852. https://doi.org/10.12989/sem.2016.59.5.841
  9. Goswami, S. and Becker, W. (2016), "Analysis of sandwich plates with compressible core using layerwise refined plate theory and interface stress continuity", J. Compos. Mater., 50(2), 201-217. https://doi.org/10.1177/0021998315572929
  10. Hayashi, T. (1967), "Analytical study of interlaminar shear stresses in a laminated composite", Trans. Japan Soc. Aeronaut. Eng. Space Sci., 10(17), 43-48.
  11. Hosseini Kordkheili, S.A. and Naghdabadi, R. (2007), "Thermoelastic analysis of functionally graded cylinders under axial loading", J. Therm. Stress., 31(1), 1-17. https://doi.org/10.1080/01495730701737803
  12. Icardi, U. and Bertetto, A.M. (1995), "An evaluation of the influence of geometry and of material properties at free edges and at corners of composite laminates", Comput. Struct., 57(4), 555-571. https://doi.org/10.1016/0045-7949(95)00069-S
  13. Javed, S., Viswanathan, K.K. and Aziz, Z.A. (2016), "Free vibration analysis of composite cylindrical shells with non-uniform thickness walls", Steel Compos. Struct., Int. J., 20(5), 1087-1102. https://doi.org/10.12989/scs.2016.20.5.1087
  14. Kant, T. and Swaminathan, K. (2000), "Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments", Compos. Struct., 49(1), 65-75. https://doi.org/10.1016/S0263-8223(99)00126-9
  15. Kapoor, H., Kapania, R.K. and Soni, S.R. (2013), "Interlaminar stress calculation in composite and sandwich plates in NURBS isogeometric finite element analysis", Compos. Struct., 106, 537-548. https://doi.org/10.1016/j.compstruct.2013.05.028
  16. Kassapoglou, C. and Lagace, P.A. (1986), "An efficient method for the calculation of interlaminar stresses in composite materials", J. Appl. Mech., 53(4), 744-750. https://doi.org/10.1115/1.3171853
  17. Kassegne, S.K. and Reddy, J.N. (1998), "Local behavior of discretely stiffened composite plates and cylindrical shells", Compos. Struct., 41(1), 13-26. https://doi.org/10.1016/S0263-8223(98)00006-3
  18. Khandelwal, R.P. and Chakrabarti, A. (2015), "Calculation of interlaminar shear stresses in laminated shallow shell panel using refined higher order shear deformation theory", Compos. Struct., 124, 272-282. https://doi.org/10.1016/j.compstruct.2015.01.025
  19. Kim, J.Y. and Hong, C.S. (1991), "Three-dimensional finite element analysis of interlaminar stresses in thick composite laminates", Comput. Struct., 40(6), 1395-1404. https://doi.org/10.1016/0045-7949(91)90410-N
  20. Levy, S. and Tang, A. (1975), "A boundary layer theory - Part II: Extension of laminated finite strip", J. Compos. Mater., 9(1), 42-52. https://doi.org/10.1177/002199837500900105
  21. Madhukar, S. and Singha, M.K. (2013), "Geometrically nonlinear finite element analysis of sandwich plates using normal deformation theory", Compos. Struct., 97, 84-90. https://doi.org/10.1016/j.compstruct.2012.10.034
  22. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates", Comput. Struct., 94, 45-53.
  23. Matsunaga, H. (2009), "Stress analysis of functionally graded plates subjected to thermal and mechanical loadings", Compos. Struct., 87(4), 344-357. https://doi.org/10.1016/j.compstruct.2008.02.002
  24. Maturi, D.A., Ferreira, A.J.M., Zenkour, A.M. and Mashat, D.S. (2014), "Analysis of sandwich plates with a new layerwise formulation", Composites: Part B, 56, 484-489. https://doi.org/10.1016/j.compositesb.2013.08.086
  25. Miri, A.K. and Nosier, A. (2011), "Out-of-plane stresses in composite shell panels: Layerwise and elasticity solutions", Acta Mech., 220(1-4), 15-32. https://doi.org/10.1007/s00707-011-0471-5
  26. Pagano, N.J. (1974), "On the calculation of interlaminar normal stress in composite laminate", J. Compos. Mater., 8, 65-81. https://doi.org/10.1177/002199837400800106
  27. Pagano, N.J. and Pipes, R.B. (1974), "Interlaminar stresses in composite kaminates, An approximate elasticity solution", J. Appl. Mech., 41, 668-672. https://doi.org/10.1115/1.3423368
  28. Plagianakos, T.S. and Sarvanos, D.A. (2009), "Higher-order layerwise laminate theory for the prediction of inter-laminar shear stresses in thick composite and sandwich composite plates", Compos. Struct., 87(1), 23-35. https://doi.org/10.1016/j.compstruct.2007.12.002
  29. Puppo, A.H. and Evensen, H.A. (1970), "Interlaminar shear in laminated composites under generalized plane stress", J. Compos. Mater., 4(2), 204-220. https://doi.org/10.1177/002199837000400206
  30. Raju, I.S. and Crews Jr., J.H. (1981), "Interlaminar stress singularities at a straight free edge in composite laminates", Comput. Struct., 14(1), 21-28. https://doi.org/10.1016/0045-7949(81)90079-1
  31. Reddy, J.N. (1992), "A layerwise shell theory with applications to buckling and vibration of cross-ply laminated stiffened circular cylindrical shells", Center for Composite Materials and Structures, Virginia Polytechnic Institute State University, 92.
  32. Varadan, T.K. and Bhaskar, K. (1991), "Bending of laminated orthotropic cylindrical shells-An elasticity approach", Compos. Struct., 17(2), 141-156. https://doi.org/10.1016/0263-8223(91)90067-9
  33. Vijayakumar, K. (2011), "Layerwise theory of bending of symmetric laminates with isotropic plies", AIAA J., 49(9), 2073-2076. https://doi.org/10.2514/1.J051080
  34. Waltz, T.L. and Vinson, J.R. (1976), "Interlaminar stresses in laminated cylindrical shells of composite materials", AIAA J., 14(9), 1213-1218. https://doi.org/10.2514/3.61455
  35. Wang, X., Cai, W. and Yu, Z.Y. (2002), "An analytic method for interlaminar stress in a laminated cylindrical shell", Mech. Adv. Mater. Struct., 9(2), 119-131. https://doi.org/10.1080/153764902753510507
  36. Whitney, J.M. (1973), "Free-edge effects in the characterization of composite materials", Am. Soc. Test. Mater., 521, 167-180.
  37. Wu, C-P. and Chi, Y-W, (1999), "Asymptotic solutions of laminated composite shallow shells with various boundary conditions", Acta Mechanica, 132(1-4), 1-18. https://doi.org/10.1007/BF01186956
  38. Yang, C., Chen, J. and Zhao, S. (2013), "The interlaminar stress of laminated composite under uniform axial deformation", MNSMS, 3(2), 49-60. https://doi.org/10.4236/mnsms.2013.32007
  39. Yas, M.H., Shakeri, M., Heshmati, M. and Mohammadi, S. (2011), "Layerwise finite element analysis of functionally graded cylindrical shell under dynamic load", J. Mech. Sci. Technol., 25(3), 597-604. https://doi.org/10.1007/s12206-011-0116-6

피인용 문헌

  1. A Galerkin Layerwise Formulation for three-dimensional stress analysis in long sandwich plates vol.24, pp.5, 2016, https://doi.org/10.12989/scs.2017.24.5.523
  2. Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis vol.34, pp.4, 2020, https://doi.org/10.12989/scs.2020.34.4.615
  3. Thermoelastic behaviour of FGM rotating cylinder resting on friction bed subjected to a thermal gradient and an external torque vol.19, pp.1, 2016, https://doi.org/10.1080/14484846.2018.1552736