DOI QR코드

DOI QR Code

LM콩과 야생콩인 돌콩의 교잡후대종 종자의 특성 평가

Characterization of Soybean Hybrid Seeds Resulted from Natural Hybridization between LM Soybean and Wild Soybean

  • 박해림 (서울대학교 농업생명과학대학 농업생명과학연구소 & 식물생산과학부) ;
  • 육민정 (서울대학교 농업생명과학대학 농업생명과학연구소 & 식물생산과학부) ;
  • 김도순 (서울대학교 농업생명과학대학 농업생명과학연구소 & 식물생산과학부)
  • Park, Hae-Rim (Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Yook, Min-Jung (Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Do-Soon (Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2016.11.14
  • 심사 : 2016.11.16
  • 발행 : 2016.12.31

초록

국내에는 야생콩이 전국적으로 분포하고 있기 때문에 LM콩으로부터의 야생콩으로 유전자 이동으로 인한 교잡후대종에 관한 연구는 국내 콩 다양성 보전과 LMO 안전관리를 위해 매우 중요하다. 따라서 본 연구는 LM콩과 일년생 야생콩인 돌콩의 교잡후대종 종자의 형태적 및 발아 휴면특성을 평가하여 교잡후대종의 잡초화 가능성을 예측하기 위한 기초자료를 제시하고자 수행되었다. 교잡 1세대의 경우 형태적으로 돌콩과 매우 유사하며, 발아휴면특성 또한 모본인 돌콩과 유사하여 휴면성이 매우 클 것으로 예측된다. 교잡 2세대 종자는 형태적 특성과 발아휴면특성이 부모종의 중간적인 특성을 지니며 모본인 돌콩에 보다 근접한 것으로 확인되었다. 특히 F2의 휴면율은 65.5%에 달할 정도로 매우 높아 잡초화 가능성을 시사한다. 국내 농업환경에서 교잡후대종이 잡초화 되려면 11월 이후에 탈립된 종자가 토양 중에서 월동하여 종자 활력을 유지하고, 휴면이 타파된 후 발아하여 자연 생태계에서 다른 재배종 및 야생종들과 경합하여 생존 및 세대진전을 할 수 있어야 한다. 따라서 LM콩 및 야생콩 간 교잡후대종의 명확한 잡초화 가능성은 종자의 월동성, 생육특성 및 종자생산성 평가 등을 추가적으로 수행하여 다각적인 측면에서 면밀히 평가되어야 할 것이다.

With increasing LM soybean import, the concern about unintentional gene flow from LM soybean to wild soybean and consequential weedy risk has been growing. Therefore, we conducted this study to characterize seed traits including germination of hybrids resulted from gene flow from LM soybean to wild soybean in comparison with their parents, LM soybean and wild soybean. Pollen-donor LM soybean seeds were much greater and heavier (about 15.0 g of 100 seed weight) than F2 hybrid (5.7 g), while pollen-recipient wild soybean and F1 hybrid seeds were smallest and lightest (about 2.5 g). F2 hybrid was brown, intermediate between yellow LM soybean seed and black wild soybean seed. These findings indicate that F1 hybrid seeds show similar characteristics with wild soybean, while F2 hybrid seeds show intermediate color and size between two parents. F2 hybrid seed showed intermediate traits between two parents in germination and dormancy rates, which were 35% and 65%, respectively. LM soybean showed no dormancy, while wild soybean showed greater than 90% dormancy. This finding indicates that F2 hybrid show intermediate characteristics in seed germination with high dormancy trait, suggesting a potential weediness of hybrids resulted from gene flow from LM soybean to wild soybean.

키워드

참고문헌

  1. Abud, S., De Souza, P.I.M., Vianna, G.R., Leonardecz, E., Moreira, C.T., et al. 2007. Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil. Genetics and Molecular Research, 6(2):445-52.
  2. Genstat Committee. 2002. Reference manual (Genstat Release 6.1). VSN International, Oxford, UK.
  3. Gepts, P. and Papa, R. 2003. Possible effects of (trans) gene flow from crops on the genetic diversity from landraces and wild relatives. Environmental Biosafety Research. 2:89-103. https://doi.org/10.1051/ebr:2003009
  4. Gompertz, B. 1825. On the nature of the functions expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philio. Trans. 115:513-585. https://doi.org/10.1098/rstl.1825.0026
  5. Hymowitz, T. 1970. On the domestication of the soybean. Economic Botany. 24:408-421. https://doi.org/10.1007/BF02860745
  6. James, C. 2014. Global status of commercialized biotech/GM crops: 2014, ISAAA Brief No. 49. ISAAA. Ithaca, NY, USA.
  7. KBCH (Korea Biosafety Clearing House). 2015. Stats of GM crops in Korea. http://www.biosafety.or.kr. (Accessed Nov. 10, 2016).
  8. Kubo, A., Aono, M., Nakajima, N., Nishizawa, T., Tamaoki, M., et al. 2013. Characterization of hybrids between wild and genetically modified glyphosate-tolerant soybeans. Plant Biotechnology. 30(4):335-45. https://doi.org/10.5511/plantbiotechnology.13.0314a
  9. Kim, C.G., Yi, H., Park, S., Yeon, J.E., Kim, D.I., et al. 2006. Monitoring the occurrence of genetically modified soybean and maize around cultivated fields and at a grain receiving port in Korea. Journal of Plant Biology. 49(3):218-223. https://doi.org/10.1007/BF03030536
  10. Kim, D.S., Kwon, Y.W. and Lee, B.W. 2006. Mathematical description of seedling emergences of rice and Echinochloa species as influenced by soil burial depth. Kor. J. Crop Sci. 51:362-368.
  11. Lakon, G. 1949. The topographical tetrazolium method for determining the germinating capacity of seeds. Plant Physiol. 24:389-394. https://doi.org/10.1104/pp.24.3.389
  12. Lee, B., Kim, C.G., Park, J.Y., Park, K.W., Kim, H.J., et al. 2009. Monitoring the occurrence of genetically modified soybean and maize in cultivated fields and along the transportation routes of the Incheon Port in South Korea. Food Control. 20(3):250-254. https://doi.org/10.1016/j.foodcont.2008.05.006
  13. Lee, J.D., Yu, J.K., Hwang, Y.H., Blake, S., So, Y.S., et al. 2008. Genetic diversity of wild soybean (Glycine soja Sieb. and Zucc.) accessions from South Korea and other Countries. Crop Science. 48(2):606-616. https://doi.org/10.2135/cropsci2007.05.0257
  14. Lim, Y., Yook, M.J., Zhang, C.J., Nah, G., Park, S., et al. 2015. Dormancy associated weedy risk of the F1 hybrid resulted from gene flow from Oilseed Rape to Mustard. Weed Turf. Sci. 4(1):35-43. (In Korean) https://doi.org/10.5660/WTS.2015.4.1.35
  15. LU, B.R. 2004. Conserving biodiversity of soybean gene pool in the biotechnology era. Plant Species Biology. 19(2):115-125. https://doi.org/10.1111/j.1442-1984.2004.00108.x
  16. Mizuguti, A., Ohigashi, K., Yoshimura, Y., Kaga, A., Kuroda, Y., et al. 2010. Hybridization between GM soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. and Zucc.) under field conditions in Japan. Environ Biosafety Res. 9(1):13-23. https://doi.org/10.1051/ebr/2010004
  17. Ohara, M. and Shimamoto, Y. 1994. Some ecological and demographic characteristics of two growth forms of wild soybean (Glycine soja). Can. J. Bot. 72:486-492. https://doi.org/10.1139/b94-065
  18. Poehlman, J.M. 1987. Breeding soybeans. Breeding Field Crops. Springer, Netherlands. pp. 421-450.
  19. Wang, K.J., Li, X.H., Zhang, J.J., Chen, H., Zhang, Z.L., et al. 2010. Natural introgression from cultivated soybean (Glycine max) into wild soybean (Glycine soja) with the implications for origin of populations of semi-wild type and for biosafety of wild species in China. Genet Resour Crop Evol. 57:747-761. https://doi.org/10.1007/s10722-009-9513-4
  20. Yoshimura, Y., Matsuo, K. and Yasuda, K. 2006. Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan. Environmental Biosafety Research, 5(3):169-173. https://doi.org/10.1051/ebr:2007003
  21. Yu, H. and Kiang, Y.T. 1993. Genetic variation in South Korean natural populations of wild soybean (Glycine soja). Euphytica. 68(3):213-221. https://doi.org/10.1007/BF00029875