DOI QR코드

DOI QR Code

GENERAL TYPES OF(∈,∈∨qk)-FUZZY SUBSEMIGROUPS IN SEMIGROUPS

  • Kang, Jeong Gi (Department of Mathematics EducationGyeongsang National University)
  • Received : 2016.06.30
  • Accepted : 2016.12.01
  • Published : 2016.12.25

Abstract

More general form of an (${\in},{\in}{\vee}q_k$)-fuzzy subsemigroup is considered. The notions of (${\in},q^{\delta}_k$)-fuzzy subsemigroup, ($q^{\delta}_0,{\in}{\vee}q^{\delta}_k$)-fuzzy subsemigroup and (${\in},{\in}{\vee}q^{\delta}_k$)-fuzzy subsemigroup are introduced, and related properties are investigated. Characterizations of an (${\in},{\in}{\vee}q^{\delta}_k$)-fuzzy subsemigroup are considered. Conditions for an (${\in},{\in}{\vee}q^{\delta}_k$)-fuzzy subsemigroup to be a fuzzy subsemigroup are provided. Relations between ($q^{\delta}_0,{\in}{\vee}q^{\delta}_k$)-fuzzy subsemigroup, (${\in},q^{\delta}_k$)-fuzzy subsemigroup and (${\in},{\in}{\vee}q^{\delta}_k$)-fuzzy subsemigroup are discussed.

Keywords

References

  1. S. K. Bhakat, (${\in}{\vee}q$)-level subset, Fuzzy Sets and Systems 103 (1999), 529-533. https://doi.org/10.1016/S0165-0114(97)00158-9
  2. S. K. Bhakat, (${\in}$, ${\in}{\vee}q$)-fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems 112 (2000), 299-312. https://doi.org/10.1016/S0165-0114(98)00029-3
  3. S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems 51 (1992), 235-241. https://doi.org/10.1016/0165-0114(92)90196-B
  4. S. K. Bhakat and P. Das, (${\in}$, ${\in}{\vee}q$)-fuzzy subgroup, Fuzzy Sets and Systems 80 (1996), 359-368. https://doi.org/10.1016/0165-0114(95)00157-3
  5. K. A. Dib and N. Galhum, Fuzzy ideals and fuzzy bi-ideals in fuzzy semigroups, Fuzzy Sets and Systems 92 (1997), 103-111. https://doi.org/10.1016/S0165-0114(96)00170-4
  6. Z. Guangji, Z. Cheng, L. Zixin and G. Jiatai, New kinds of fuzzy ideals in BCI-algebras, Fuzzy Optim Decis Making 5 (2006), 177-186. https://doi.org/10.1007/s10700-006-7335-9
  7. S. M. Hong, Y. B. Jun and J. Meng, Fuzzy interior-ideals in semigroups, Indian J. Pure Appl. Math. 26 (1995), 859-863.
  8. Y. B. Jun, On (${\alpha}, {\beta}$)-fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc. 42(4) (2005), 703-711. https://doi.org/10.4134/BKMS.2005.42.4.703
  9. Y. B. Jun, Fuzzy subalgebras of type (${\alpha}{\beta}$) in BCK/BCI-algebras, Kyungpook Math. J. 47 (2007), 403-410.
  10. Y. B. Jun, On (${\alpha}, {\beta}$)-fuzzy ideals of BCK/BCI-algebras, Sci. Math. Jpn. 60(3) (2004), 613-617.
  11. Y. B. Jun, Generalizations of (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebras in BCK/BCI- algebras Comput. Math. Appl. 58 (2009), 1383-1390. https://doi.org/10.1016/j.camwa.2009.07.043
  12. Y. B. Jun and S. Z. Song, Generalized fuzzy interior ideals in semigroups, Inform. Sci. 176 (2006), 3079-3093. https://doi.org/10.1016/j.ins.2005.09.002
  13. Y. B. Jun and X. L. Xin, More general forms than (${\in}$, ${\in}{\vee}q{\kappa}$)-fuzzy subalgebras in BCK/BCI-algebras, (submitted).
  14. O. Kazanci and S. Yamak, Generalized fuzzy bi-ideals if semigroups, Soft Com- put. 12 (2008), 1119-1124. https://doi.org/10.1007/s00500-008-0280-5
  15. O. Kazanci and S. Yamak, Fuzzy ideals and semiprime fuzzy ideals in semigroups, Inform. Sci. 179 (2009), 3720-3731. https://doi.org/10.1016/j.ins.2009.06.026
  16. N. Kuroki, Fuzzy hi-ideals in semigroups, Comment. Math., Univ. St. Paul. 28 (1979), 17-21.
  17. N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fazzy Sets and Systems 5 (1981), 203-215. https://doi.org/10.1016/0165-0114(81)90018-X
  18. N. Kuroki, Fuzzy semiprime ideals in semigroups, Fazzy Sets and Systems 8 (1982), 71-79 . https://doi.org/10.1016/0165-0114(82)90031-8
  19. N. Kuroki, On fuzzy semigroups, Inform. Sci. 53 (1991), 203-236. https://doi.org/10.1016/0020-0255(91)90037-U
  20. N. Kuroki, Fuzzy semiprime quasi-ideals in semigroups, Inform. Sci. 75(3) (1993), 201-211. https://doi.org/10.1016/0020-0255(93)90054-P
  21. X. Ma, J. M. Zhan and W. A. Dudek, Some kinds of (${\in}$, ${\in}{\vee}q$)-fuzzy filters of BL-algebras, Comput. Math. Appl. 58 (2009), 248-256. https://doi.org/10.1016/j.camwa.2009.03.109
  22. X. Ma, J. M. Zhan, B. Davvaz and Y. B. Jun, Some kinds of (${\in}$, ${\in}{\vee}q$)-interval- valued fuzzy ideals of BCI-algebras, Inform. Sci. 178 (2008), 3738-3754. https://doi.org/10.1016/j.ins.2008.06.006
  23. Z. W. Mo and X. P. Wang, On pointwise depiction of fuzzy regularity of semigroups, Inform. Sci. 74 (1993), 265-274. https://doi.org/10.1016/0020-0255(93)90099-8
  24. P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599. https://doi.org/10.1016/0022-247X(80)90048-7
  25. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. https://doi.org/10.1016/0022-247X(71)90199-5
  26. M. Shabir, Y. B. Jun and Y. Nawaz, Characterizations of regular semigroups by (${\alpha}, {\beta}$)-fuzzy ideals, Comput. Math. Appl. 59 (2010), 161-175. https://doi.org/10.1016/j.camwa.2009.07.062
  27. M. Shabir, Y. B. Jun and Y. Nawaz, Semigroups characterized by ($${\in}$ $${\in}{\vee}q{\kappa}$)- fuzzy ideals, Comput. Math. Appl. 60 (2010), 1473-1493. https://doi.org/10.1016/j.camwa.2010.06.030
  28. X. Yuan, C. Zhang and Y. Ren, Generalized fuzzy groups and many-valued implications, Fuzzy Sets and Systems 138 (2003), 205-211. https://doi.org/10.1016/S0165-0114(02)00443-8
  29. L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  30. J. Zhan and Y. B. Jun, Generalized fuzzy ideals of BCI-algebras, Bull. Malays. Math. Sci. Soc. bf 32 (2009), 119-130.
  31. J. Zhan, Y. B. Jun and B. Davvaz, On ($${\in}$, $${\in}{\vee}q$)-fuzzy ideals of BCI-algebras, Iran. J. Fuzzy Syst. bf 6 (2009), 81-94.
  32. J. Zhan, Y. B. Jun and W. A. Dudek, On ($${\in}$, $${\in}{\vee}q$)-fuzzy filters of pseudo-BL algebras, Bull. Malays. Math. Sci. Soc. 33 (2010), 57-67.