DOI QR코드

DOI QR Code

PROPERTIES OF FUNCTIONS WITH VALUES IN FIBONACCI QUATERNIONS IN CLIFFORD ANALYSIS

  • Kim, Ji Eun (Department of Mathematics, Pusan National University) ;
  • Shon, Kwang Ho (Department of Mathematics, Pusan National University)
  • Received : 2016.02.03
  • Accepted : 2016.10.14
  • Published : 2016.12.25

Abstract

We give the representation of Fibonacci quaternions for convenient calculus. We research the corresponding properties of Fibonacci quaternions and some examples of a function with values in modified Fibonacci quaternions.

Keywords

References

  1. M. Akyigit, H.H. Kosal and M. Tosun, Split Fibonacci Quaternions, Adv Appl Clifford Al. 23 (2013), 535-545. https://doi.org/10.1007/s00006-013-0401-9
  2. G. Berzsenyi, Gaussian Fibonacci Numbers, The Fibonacci Quart. 15 (1977), 233-236.
  3. I. A. Guven and S. K. Nurkan, Dual Fibonacci Quaternions, Adv Appl Clifford Al. (2014), 1-12.
  4. S. Halc, On Fibonacci Quaternions, Adv Appl Clifford Al. 22 (2012), 321-327. https://doi.org/10.1007/s00006-011-0317-1
  5. A. F. Horadam, Complex Fibonacci Numbers and Fibonacci Quaternions, Am Math Mon. 70 (1963), 289-291. https://doi.org/10.2307/2313129
  6. M. R. Iyer, Some Results on Fibonacci Quaternions, The Fibonacci Quart. 7(2) (1969), 201-210.
  7. J. Kajiwara, X. D. Li and K. H. Shon, Regeneration in complex, quaternion and Clifford analysis, Adv Comp Anal Appl., Int Coll Finite or Infinite Dim Comp Anal Appl., Hanoi, Vietnam, Kluwer Academic Publishers 2(9) (2004), 287-298.
  8. J. Kajiwara, X. D. Li and K. H. Shon, Function spaces in complex and Clifford analysis, Inhomo Cauchy-Riemann system quat Cliff anal ellip., Int Coll Finite or Infinite Dim Comp Anal Appl., Hue, Vietnam, Hue University 14 (2006), 127-155.
  9. J. E. Kim, S. J. Lim and K. H. Shon, Regular functions with values in ternary number system on the complex Clifford analysis, Abstr Appl Anal. 2013 Artical ID 136120 (2013), 7 pages.
  10. J. E. Kim, S. J. Lim and K. H. Shon, Regularity of functions on the reduced quaternion field in Clifford analysis, Abstr Appl Anal. 2014 Artical ID 654798 (2014), 8 pages.
  11. J. E. Kim and K. H. Shon, The Regularity of functions on Dual split quaternions in Clifford analysis, Abstr Appl Anal. 2014 Artical ID 369430 (2014), 8 pages.
  12. J. E. Kim and K. H. Shon, Polar Coordinate Expression of Hyperholomorphic Functions on Split Quaternions in Clifford Analysis, Adv Appl Clifford Alg. 25 (4) (2015), 915-924. https://doi.org/10.1007/s00006-015-0541-1
  13. J. E. Kim and K. H. Shon, Coset of hypercomplex numbers in Clifford analysis, Bull Korean Math Soc. 52(5) (2015), 1721-1728. https://doi.org/10.4134/BKMS.2015.52.5.1721
  14. J. E. Kim and K. H. Shon, Inverse Mapping Theory on Split Quaternions in Clifford Analysis, To appear in Filomat (2016).
  15. M. N. Swamy, On Generalized Fibonacci Quaternions, The Fibonacci Quart. 5 (1973), 547-550.