Acknowledgement
Supported by : Doctoral Scientific Research Foundation of Liaoning Province
References
- Adibi-Asl, R. and Seshadri, R. (2007), "Simplified Limit Load Determination of Cracked Components Using the Reference Two-Bar Structure", ASME PVP, Paper No. PVP2007-26747, San Antonio, TX, USA.
- ASME (1971), ASME Boiler and Pressure Vessel Code; Section III. Division 1, American Society Mechanical Engineers, New York, NY, USA.
- ASME (1974), ASME Boiler and Pressure Vessel Code; Section III. Division 1 Par. 1430, American Society Mechanical Engineers, New York, NY, USA.
- ASME (1975), ASME Boiler and Pressure Vessel Code; Section III. Division 1 Par. 1430, American Society Mechanical Engineers, New York, NY, USA.
- ASME (1986), ASME Boiler and Pressure Vessel Code; Section XI. Division 2, American Society Mechanical Engineers, New York, NY, USA.
- ASME (2010), ASME Boiler and Pressure Vessel Code; Section VIII. Division 2, American Society Mechanical Engineers, New York, NY, USA.
- Brighenti, R. (2001), "Influence of a central straight crack on the buckling behavior of thin plates under tension, compression, or shear loading", Int. J. Mech. Mater. Des., 6(1), 73-87. https://doi.org/10.1007/s10999-010-9122-6
- Calladine, C.R. (2000), Plasticity for Engineers, Horwood Publisheing, Chichester, UK.
- Caratheodory, C. and Schmidt, E. (1923), "Uber Die Hencky-Prandtlschen Kurven", Z. angew. Math. Mech., 3, 468-475. https://doi.org/10.1002/zamm.19230030607
- Charnes, A. and Greenberg, H.J. (1951), "Plastic collapse and linear programming", Bull. Am. Math. Soc., 57(6), 480 p.
- Chen, F. (2005), "Investigation on the limit and burst pressures for the vessels with nozzle", Ph.D. Dissertation; Nanjing University of Technology, Nanjing, China.
- Chen, X.H., Chen, X., Chen, G. and Li, D.M. (2015), "Ratcheting behavior of pressurized Z2CND18.12N stainless steel pipe under different control modes", Steel Compos. Struct., Int. J., 18(1), 29-50. https://doi.org/10.12989/scs.2015.18.1.029
-
Chen, X.H. and Chen, X. (2016), "Effect of local wall thinning on ratcheting behavior of pressurized
$90^{\circ}$ elbow pipe under reversed bending using finite element analysis", Steel Compos. Struct., Int. J., 20(4), 931-950. https://doi.org/10.12989/scs.2016.20.4.931 - Chiodo, M.S.G. and Ruggieri, C. (2009), "Failure assessments of corroded pipelines with axial defects using stress-based criteria: Numerical studies and verification analyses", Int. J. Press. Vessel. Pip., 86(2-3), 164-176. https://doi.org/10.1016/j.ijpvp.2008.11.011
- Cosham, A., Hopkins, P. and Macdonald, K.A. (2007), "Best practice for the assessment of defects in pipelines - Corrosion", Eng. Fail. Anal., 14(7), 1245-1265. https://doi.org/10.1016/j.engfailanal.2006.11.035
- Davis, R.O. and Selvadurai, A.P. (2002), Plasticity and Geomechanics, Cambridge University Press, UK.
- Demir, H.H. and Drueker, D.C. (1963), "An Experimental Study of Cylindrieal Shells under Ring Loads", In: Progress in Applied Mechanics, (Prager Anniversary Volume), MaeMillan, New York, pp. 205-220.
- EN13445-3 (2002), European Committee for Standardization (CEN); European Standard for unfired pressure vessel-Part 3: design.
- Fanous, Ihab F.Z.R. and Seshadri, R. (2007), "Stress classification using the R-node method", 129(4), 676-682. https://doi.org/10.1115/1.2767357
- Gao, B.J., Chen, X.H., Shi, X.P. and Dong, J.H. (2010), "An approach to derive primary bending stress from finite element analysis for pressure vessels and applications structural design", ASME J. Press. Vessel Technol., 132(6), 061101-1-8. https://doi.org/10.1115/1.4001656
- Gerdeen, J.C. (1979), "A critical evaluation of plastic behavior data and a united definition of plastic loads for pressure components", WRC Bulletin 254.
- Hencky, H. (1923), "Uber Einige Statisch Bestimmte Falle des Gleichgewichts in Plastischen Korpern", Z. Angew. Math. Mech., 3, 241-251. https://doi.org/10.1002/zamm.19230030401
- Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford at the Clarendon Press.
- He, K.G. (1995), Design Basis for Pressure Vessel, China Machine Press, Beijing, China.
- Hechmer, J.L. and Hollinger, G.L. (1989), "Code evaluation of 3D stresses on a plane", Am. Soc. Mech. Eng., Press. Vessels Pip. Div. (Publication) PVP, 161, 33-46.
- Hechmer, J.L. and Hollinger, G.L. (1991), "The ASME code and 3D stress evaluation", ASME J. Press. Vessel Technol., 113(4), 481-487. https://doi.org/10.1115/1.2928784
- Hechmer, J.L. and Hollinger, G.L. (1998), "3D stress criteria guidelines for application", WRC Bulletin 429.
- Hodge, P.G. (1964), "Yield-point load determination by non-linear programming", Proceedings of the 11th International Congress of Applied Mechanics, Munich, Germany, pp. 554-561.
- Hollinger, G.L. and Hechmer, J.L. (2000), "Three-dimensional stress criteria-summary of the PVRC project", ASME J. Press. Vessel Technol., 122(1), 105-109. https://doi.org/10.1115/1.556157
- Hsu, K.H. and Mckinley, D.A. (1990), "SOAP-A computer program for classification of three dimension finite element stresses on a plane", PVP ASME, 185, 11-19.
- Kamaya, M., Suzuki, T. and Meshii, T. (2008), "Failure pressure of straight pipe with wall thinning under internal pressure", Int. J. Press. Vessel Pip., 85(9), 628-634. https://doi.org/10.1016/j.ijpvp.2007.11.005
- Khyabani, A. and Sadrnejad, S.A. (2009), "Finite element evaluation of residual stresses in thick plates, Int. J. Mech. Mat. Des., 5(3), 253-261. https://doi.org/10.1007/s10999-009-9099-1
- Kirkood, M.G. (1986), "Finite element stress analysis of an equal diameter branch pipe intersection subjected to out-of-plane and twisting moments", Strain Anal., 21(1), 171-183.
- Kirkood, M.G. (1989), "Techniques for measuring plastic loads in branch pipe connections loads by pressure and in-plane moments", Pipework Engineering and Operation, London, UK, pp. 197-208.
- Kroenke, W.C. (1973), "Classification of finite element stress according to ASME section III", Stress Categories the Winter Annual Meeting of the American Society Engineering, November.
- Li, N., Sang, Z.F. and Widera, G.E.O. (2008), "Study of plastic limit load on pressurized cylinders with lateral nozzle", ASME J. Press. Vessel Technol., 130(4), 041210-1-7. https://doi.org/10.1115/1.2967743
- Lu, M.W. and Xu, H. (2006), "Discussion on some important problems of design by analysis (1)", J. Pres. Ves. (China), 23(1), 15-19.
- Lyamin, A.V. and Sloan, S.W. (2002a), "Upper bound limit analysis using linear finite elements and nonlinear programming", Int. J. Numer. Anal. Meth. Geomech., 26(2), 181-216. https://doi.org/10.1002/nag.198
- Lyamin, A.V. and Sloan, S.W. (2002b), "Lower bound limit analysis using nonlinear programming", Int. J. Numer. Meth. Eng., 55(5), 573-611. https://doi.org/10.1002/nme.511
- Lynch, M.A. and Moffat, D.G. (2000), "Limit load for cracked piping branch junctions under pressure and branch out-of-plane bending", Int. J. Press. Vessels Pip., 77(5), 185-194. https://doi.org/10.1016/S0308-0161(00)00008-9
- Mackenzie, D., Boyle, J.T. and Spence, J. (1994), "Some recent developments in pressure vessel design by analysis", J. Pro. Mech. Eng., 208(15), 23-29. https://doi.org/10.1243/PIME_PROC_1994_208_206_02
- Miklus, S. and Kosel, F. (1991), "Plastic collapse of pipe bi-furcation", Int. J. Press. Vessels Pip., 79-92.
- Mura, T. and Lee, S.L. (1965), "Application of variational principles to limit analysis", Q. Appl. Math., 21(3), 243-248.
- Mura, T., Kao, J.S. and Lee, S.L. (1964), "Limit analysis of circular orthotropic plates", J. Eng. Mech. Div. ASCE, 90(5), 375-395.
- Mura, T., Rimawi, W.H. and Lee, S.L. (1965), "Extended theorems of limit analysis", Q. Appl. Math., 23(2), 171-179. https://doi.org/10.1090/qam/99943
- Muscat, M., Mackenzie, D. and Hamilton, R. (2003), "A work criterion plastic collapse", Int. J. Press. Vessels Pip., 80(1), 49-58. https://doi.org/10.1016/S0308-0161(02)00105-9
- Patel, D. M. and Kumar, D.B. (2014), "Pressure vessel limit load estimation by FEM and experimental method", Int. J. Innov. Res. Adv. Eng., 1(9), 109-114.
- Plancq, D. and Berton, M.N. (1998), "Limit analysis based on elastic compensation method of branch pipe tee connection under internal pressure and out-of-plane moment loading", Int. J. Press. Vessels Pip., 75(11), 819-825. https://doi.org/10.1016/S0308-0161(98)00085-4
- Prager, W. and Hodge, P.G. (1951), Theory of Perfectly Plastic Solids, Wiley, New York, NY, USA.
- Prandtl, L. (1923), "Anwendungsbeispiele Henckyschen Satz uber das Plastische Glei Zeitschr", Angkew. Mathematik u. Mechanik, 407.
- R5 (1990), Assessment Procedure for the High Temperature Response of Structures; Nuclear Electric plc, 2.
- Samo, M. and Franc, K. (1991), "Plastic collapse of pipe bifurcation", Int. J. Press. Vessels Pip., 48(1), 79-92. https://doi.org/10.1016/0308-0161(91)90059-B
- Save, M. (1972), "Experimental verification of plastic limit analysis of torispherical and toriconical heads", Press. Vessel Pip. Des. Anal. I, ASME, 1, 382-416.
- Schroeder, J. (1980), "A plastic modulus approach to experimental limit loads", ASME Paper No. 80-C2/PVP-1.
- Schroeder, J. (1985), "Experimental limit couples for branch moment loads on 4 in. ANSI B16.9 Tees", WRC Bulletin 304.
- Seshadri, R. and Marriott, D.L. (1993), "On Relating the Reference Stress, Limit Load and the ASME Stress Classification Concepts," Int. J. Press. Vessels Pip., 56, 387-408. https://doi.org/10.1016/0308-0161(93)90007-G
- Su, W.X., Zheng, J.Y. and Kai, F.M. (2005), "A 5% maximum principal strain criterion to prevent gross plastic deformation", Press. Vessel Technol., 22(12), 17-21.
- Townley, C.H.A., Findlay, G.E., Goodman, A.M. and Stanley, P. (1971), "Elastic-plastic computations a basic for design charts for torispherical pressure vessel ends", Proceedings of the Institution of Mechanical Engineers. Part E: Journal of Process Mechanical Engineering, 185(63), 869-877.
- Zhang, W.M., Lu, M.W. and Zhang, R.Y. (1989), "A zero-curvature criterion to determine the practical collapse load", Acta Mech. Solida Sin., 10(2), 152-159.
- Zouain, N., Herskovits, J., Borges, L.A. and Feijoo, R.A. (1993), "An iterative algorithm for limit analysis with nonlinear yield function", Int. J. Solids Struct., 30(10), 1397-1417. https://doi.org/10.1016/0020-7683(93)90220-2
Cited by
- A finite element-based analysis approach for computing the remaining strength of the pressure equipment with a local thin area defect vol.131, pp.None, 2016, https://doi.org/10.1016/j.engfailanal.2021.105883