DOI QR코드

DOI QR Code

3차원 모델링을 이용한 템플릿 정합

3D-Modeling-Based Template Matching

  • 한영모 (한양사이버대학교 컴퓨터공학과)
  • 투고 : 2016.05.19
  • 심사 : 2016.10.12
  • 발행 : 2016.12.31

초록

본 논문은 3차원 모델링을 이용한 템플릿 정합 방법을 제안한다. 본 방법은 각도와 크기 별로 매칭 중에 여러 개의 2차원 템플릿을 사용하는 기존의 불편한 영상 템플릿 정합 방법보다 사용 편리성을 증대시킨다.

This paper proposes the 3D-modeling-based image template matching method. It is more convenient than contemporary 2D-template-based methods that use many 2D image templates for possible angles and sizes in matching process.

키워드

참고문헌

  1. T. Mahalakshmi and R. Muthaiah, "VLSI implementation of an efficient template matching architecture based on feature extraction," Journal of Theretical and Applied Information Technology, Vol.38, No.2, pp.191-195, 2012.
  2. M. Ikebe and T. Asai, "A digital vision chip for early feature extraction with rotated template-matching CA," Journal of Robotics and Mechatronics, Vol.17, No.4, pp.372-377, 2005. https://doi.org/10.20965/jrm.2005.p0372
  3. N. Ranganathan and S. Venugopal, "A VLSI chip for template matching," in Proceedings of the IEEE International Conference on VLSI in Computers and Processors, pp.542-545, 1994.
  4. A. Valsecchi, S. Damas, and J. Santamaria, "An image registration approach using genetic algorithms," in 2012 IEEE Congress on Evolutionary Computation, IEEE, Jun., 2012.
  5. S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim, "Elastix: a toolbox for intensity-based medical image registration," IEEE Transactions on Medical Imaging, Vol.29, No.1, pp.196-205, 2010. https://doi.org/10.1109/TMI.2009.2035616
  6. B. Han, C. Paulson, J. Wang, and D. Wu, "Depth based image registration via 3D geometric segmentation," Journal of Visual Communication and Image Representation (JVCIR), Vol.22, No.5, pp.421-431, 2012. https://doi.org/10.1016/j.jvcir.2011.03.006
  7. B. Han, C. Paulson, J. Wang, and D. Wu, "Depth-based image registration," in Proceedings of the SPIE 7699, Algorithms for Synthetic Aperture Radar Imagery XVII, 76990Y, Apr., 2010.
  8. D. Zikic, B. Glocker, O. Kutter, M. Groher, N. Komodakis, A. Khamene, N. Paragios, and N. Navab, "Markov random field optimization for intensity-based 2D-3D registration," in Proceedings of the SPIE 7623, Medical Imaging 2010: Image Processing, 762334, San Diego, Mar., 2010.
  9. S. Jonic, P. Thevenaz, C. O. S. Sorzano, and M. Unser, Spline-based 3D-to-2D image registration for image-guided surgery and 3D electron microscopy, 2006. [Internet], http://bigwww.epfl.ch/publications/jonic0601.pdf.
  10. Ahuja, Kavita, and Preeti Tuli. "Object recognition by template matching using correlations and phase angle method," International Journal of Advanced Research in Computer and Communication Engineering, Vol.2, No.3, pp.1368-1373, 2013.
  11. A. Mahmood and K. Sohaib, "Correlation-coefficient-based fast template matching through partial elimination," EEE Transactions on Image Processing, Vol.21, No.4. pp.2099-2108, 2012. https://doi.org/10.1109/TIP.2011.2171696
  12. H. Y. Kim and S. A. D. Araujo, "Grayscale template-matching invariant to rotation, scale, translation, brightness and contrast," in Pacific-Rim Symposium on Image and Video Technology, Springer Berlin Heidelberg, 2007.
  13. Y. Han, "Image-based motion rendering, motion capture, realistic computer animation, optimal control theory," The KIPS Transactions : Part B, Vol.15-B, No.2, pp.103-112, 2008.
  14. Y. Han, "3D model construction from image scanning without iteration or SVD," Journal of The Institute of Electronics Engineers of Korea, Vol.50, No.11, pp.165-170, 2013.
  15. Y. Han, "Awareness of 3-D pose trajectory in video contents with optimal control refinement," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol.4, Iss.1, pp.118-129, 2014. https://doi.org/10.1109/JETCAS.2014.2298920