Abstract
In this paper, we propose an intelligent fire learning and detection system using convolutional neural networks (CNN). Through the convolutional layer of the CNN, various features of flame and smoke images are automatically extracted, and these extracted features are learned to classify them into flame or smoke or no fire. In order to detect fire in the image, candidate fire regions are first extracted from the image and extracted candidate regions are passed through CNN. Experimental results on various image shows that our system has better performances over previous work.
본 논문에서는 컨볼루션 신경망 모델을 이용한 지능형 화재 학습 및 탐지 시스템을 제안한다. 제안하는 시스템에서 사용된 신경망의 컨볼루션 층을 통해 불꽃 이미지와 연기 이미지에 대한 특징맵을 생성하고, 생성된 특징맵에 대하여 불꽃과 연기를 분류하는 학습을 진행한다. 이렇게 학습된 신경망에 움직임 특징 및 색상 특징만을 이용한 간단한 처리를 통해 검출된 화재 후보 영역 이미지를 입력시키면 입력된 영역에 화재가 발생했는지의 여부를 알 수 있다. 다양한 영상을 대상으로 실험한 결과 학습된 신경망은 화재 후보 영역에서 불꽃과 연기를 분류하는데 뛰어난 효과를 보여줌을 확인하였다.