DOI QR코드

DOI QR Code

MRSPAKE : A Web-Scale Spatial Knowledge Extractor Using Hadoop MapReduce

MRSPAKE : Hadoop MapReduce를 이용한 웹 규모의 공간 지식 추출기

  • Received : 2016.10.04
  • Accepted : 2016.10.12
  • Published : 2016.11.30

Abstract

In this paper, we present a spatial knowledge extractor implemented in Hadoop MapReduce parallel, distributed computing environment. From a large spatial dataset, this knowledge extractor automatically derives a qualitative spatial knowledge base, which consists of both topological and directional relations on pairs of two spatial objects. By using R-tree index and range queries over a distributed spatial data file on HDFS, the MapReduce-enabled spatial knowledge extractor, MRSPAKE, can produce a web-scale spatial knowledge base in highly efficient way. In experiments with the well-known open spatial dataset, Open Street Map (OSM), the proposed web-scale spatial knowledge extractor, MRSPAKE, showed high performance and scalability.

본 논문에서는 Hadoop MapReduce 병렬 분산 컴퓨팅 환경을 이용해 개발한 공간 지식 추출기를 제안한다. 이 공간 지식 추출기는 대용량의 공간 데이터 집합으로부터, 임의의 두 공간 객체들 사이에 만족되는 위상 관계와 방향 관계를 나타내는 정성 공간 지식 베이스를 생성해낸다. 본 논문에서 제안하는 MapReduce 기반의 대용량 공간 지식 추출기 MRSPAKE는 HDFS 상의 분산 공간 데이터 파일에 대한 R 트리 색인과 범위 질의들을 이용함으로써, 웹 규모의 정성 공간 지식 베이스를 매우 효율적으로 추출해낸다. 대표적인 공개 데이터 집합인 Open Street Map(OSM)을 이용한 성능 분석 실험을 통해, 본 논문에서 제안하는 웹 규모의 공간 지식 추출기 MRSPAKE의 높은 성능과 확장성을 확인할 수 있었다.

Keywords

References

  1. J. Renz, "Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis," Proc. of IJCAI, 1999.
  2. D. J. Peuquet and C. X. Zhang, "An Algorithm to Determine the Directional relation between Arbitrarily-Shaped Polygons in the Plane," Patterb Recognition, Vol.20, No.1, pp.65-74, 1987. https://doi.org/10.1016/0031-3203(87)90018-5
  3. Z. Gantner, M. Westphal, and S. Wolfl, "GQR: A Fast Reasoner for Binary Qualitative Constraint Calculi," Proceedings of AAAI, Vol.8, 2008.
  4. D. Wolter, "SparQ-A Spatial Reasoning Toolbox," AAAI Spring Symposium: Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, p.53, 2009.
  5. S. Batsakis and E. G. M. Petrakis, "SOWL: a framework for handling spatio-temporal information in OWL 2.0," International Workshop on Rules and Rule Markup Languages for the Semantic Web, Springer Berlin Heidelberg, pp.242-249, 2011.
  6. N. Mainas and E. G. M. Petrakis, "CHOROS2: Improving the Performance of Qualitative Spatial Reasoning in OWL," IEEE 26th International Conference on Tools with Artificial Intelligence, pp.283-290, 2014.
  7. S. Nam and I. Kim, "A Qualiative Spatial Reasoner Supporting Cross-Consistency checks between Directional and Topological Relations," Journal of KIISE : Computing Practices and Letters, Vol.20, No.4, pp.248-252, 2014.
  8. R. Battle and D. Kolas, "Enabling the Geospatial Semantic Web with Parliament and GeoSPARQL," Semantic Web Journal, Vol.3, No.4, pp.355-370, 2012.
  9. Y. Gatsoulis, M. Alomari, C. Burbridge, C. Dondrub, P. Duckworth, P. Lightbody, M. Hangeide, N. Hawes, D. C. Hogg, and A. G. Cohn, "QSRlib: A Software Library for Online Acquisition of Qualitative Spatial Relations from Video," International Workshop on Qualitative Reasoning, pp.36-41, 2016.
  10. S. J. Lee, et al. "Spatial Knowledge Extraction from Geometric Data," Proc. of KIISE Winter Conference, pp.1337-1339, 2014.
  11. Open Street Map [Internet], https://www.openstreetmap.org/.
  12. USGS [Internet], http://www.usgs.gov/.
  13. OS OpenData [Internet], http://www.ordnancesurvey.co.uk/.
  14. J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on large Clusters," Communications of the ACM, Vol.51, No.1, pp.107-113, 2008. https://doi.org/10.1145/1327452.1327492
  15. J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen, and H. Bal, "WebPIE: A Web-Scale Parallel Inference Engine using MapReduce," Web Semantics: Science, Services and Agents on the World Wide Web, Vol.10, pp.59-75, 2012. https://doi.org/10.1016/j.websem.2011.05.004
  16. S. Nam and I. Kim, "Design and Implementation of Large-Scale Spatial Reasoner using MapReduce Feamework," Transactions on KIPS: Software and Data Engineering, Vol.3, No.10, pp.397-406, 2014. https://doi.org/10.3745/KTSDE.2014.3.10.397
  17. M. Perry and J. Herring, "GeoSPARQL - A geographic query language for RDF data," OGC Implementation Standard, 2012.
  18. M. Egenhofer, "Qualitative spatial-relation reasoning for design," Studying Visual and Spatial Reasoning for Design Creativity, pp.153-175, 2015.
  19. M. Egenhofer and J. Herring, "A Mathematical Framework for the Definition of Topolgical Relationships," in Fourth International Symposium on Spatial Data Handling, pp.803-813, 1990.
  20. J. Herring, "OpenGIS Implementation Standard for Geographic information-Simple feature access-Part 1: Common architecture," OGC Document, 2011.
  21. J. F. Allen, "Maintaining Knowledge about Temporal Intervals," Communications of the ACM, Vol.26, pp.832-843, 1983. https://doi.org/10.1145/182.358434
  22. R. Moratz and R. Marco, "Qualitative Spatial Reasoning about Relative Point Position," Journal of Visual Languages & Computing, Vol.19, No.1, pp.75-98, 2008. https://doi.org/10.1016/j.jvlc.2006.11.001
  23. S. Leutenegger, M. Lopez, and J. Edgington, "STR: A Simple and Efficient Algorithm for R-tree Packing," in Data Engineering, Proceedings, 13th International Conference on IEEE, pp.497-506, 1997.
  24. A. Eldawy and M. F. Mokbel, "SpatialHadoop: A MapReduce Framework for Spatial Data," in Proceedings of the IEEE International Conference on Data Engineering(ICDE), 2015.
  25. JTS Topology Suit [Internet], http://www.vividsolutions.com/jts/JTSHome.htm/.
  26. Openlayers [Internet], http://openlayers.org/.