
한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 20, No. 11 : 2119~2124 Nov. 2016

IoT 게이트웨이 기반의 이벤트 중심 접근 방식 응용프로그램 설계

라이오넬1 · 장종욱2*

Design of IoT Gateway based Event-Driven Approach for IoT related 
Applications

Lionel Nkenyereye1 · Jong-Wook Jang2*

1Department of Computer Engineering, Dong-Eui University, Busan 47340, Korea
2*Department of Computer Engineering, Dong-Eui University, Busan 47340, Korea

요  약  

사물 인터넷(IoT)은 효율적인 시간 응답 및 처리를 위해 이벤트 중심으로 접근 할 필요가 있다. IoT에서 모바일 기

기의 성장은 IoT 응용 프로그램과 관련이 있는 지능형 건물로 연결이 된다. 예를 들어, 홈 오토메이션 제어 시스템은 

홈 서버에 액세스하기 위해 스마트 폰이나 웹 서비스에 클라이언트 시스템과 같은 웹 응용 프로그램을 사용하여 제

어 명령을 전송 합니다. 홈 서버는 클라이언트 시스템으로부터 명령을 수신 받은 후 조명 시스템을 제어 한다. 게이트

웨이 기반의 클라이언트 처리 담당인 RESTful 기술은 ‘인터넷상에 숨어있는 다수의 클라이언트들에 대한 증명’을 

요청한다. 본 논문에서는 동시성 이벤트를 처리하기 위한 IoT 게이트웨이의 설계 작업을 제안한다.  NodeJS의 통신 

프로토콜 기반의 메시지 지향 미들웨어인 XMPP는 중앙 허브를 통해 게이트웨이에 접속하여 지능형 빌딩 제어 장치

의 통신 부분을 처리한다.

ABSTRACT 

The Internet of things (IoT) needs to be an event-driven approach for efficient related time response and processing. 
The growth of mobile devices in Internet of Things (IoT) leads to a number of intelligent buildings related IoT 
applications. For instance, home automation controlling system uses client system such web apps on smartphone or 
web service to access the home server by sending control commands. The gateway based RESTful technology 
responsible for handling clients’requests attests an internet latency in case a large number of clients’ requests submit 
toward the gateway increases. In this paper, we propose the design tasks of the IoT gateway for handling concurrency 
events. The gateway based event-driven architecture is designed for building IoT gateway using node.js on one side 
and communication protocol based message-oriented middleware known as XMPP to handle communications of 
intelligent building control devices connected to the gateway through a centralized hub. 

키워드 : 만약 IoT 게이트웨이, 이벤트 기반 아키텍처, Node.js, 지능형 빌딩 시스템, XMPP, 사물의 인터넷.

Key word : IoT Gateway, Event-driven Architecture, Node.js, Intelligent buildings system, XMPP, Internet of Things.

Received 31 October 2016, Revised 02 November 2016, Accepted 05 November 2016
* Corresponding Author Jong-Wook Jang(E-mail: jwjang@deu.ac.kr, Tel:+82-51-890-1709) 
Department of Computer Engineering, Dong-Eui University, Busan 47340, Republic of  Korea

Open Access   http://dx.doi.org/10.6109/jkiice.2016.20.11.2119 print ISSN: 2234-4772  online ISSN: 2288-4165

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/li-censes/ 
by-nc/3.0/) which permits unrestricted  non-commercial use, distribution, and reproduction in any medium, provided   the original work is properly cited.
Copyright Ⓒ The Korea Institute of Information and Communication Engineering.

Journal of the Korea Institute of Information and
Communication Engineering



한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 20, No. 11 : 2119~2124 Nov. 2016

2120

Ⅰ. INTRODUCTION

The intelligent buildings refers to a range of Internet 

of Things (IoT) applications such as automatic energy 

metering, home automation and wireless monitoring[1]. 

Traditionally, the intelligent buildings system use 

gateway based client server architecture such as 

web-based mobile application or web service to handle 

commands to control devices in IoT environment. As the 

number of clients’ requests increases in simultaneously 

manner, the Representation State Transfer (REST) 

architecture to handle those requests encounters 

limitations for performing them successfully, and 

therefore, slows down predefined actions that take 

automatically without the help of humans. 

This paper focuses on designing a prototype 

architecture for a gateway and its components of 

intelligent buildings for IoT applications. The model 

that we are looking for should have a gateway 

component with the ability of processing several 

requests from multiple smart devices simultaneously 

without blocking and long execution requests. These 

features are essential for reducing communication costs. 

In server-side asynchronous event-driven programming 

[2], the user requests are treated as application events 

and inserted into an event queue. This event-driven 

model has been widely adopted in building scalable web 

applications, mainly through the Node.js [3] framework. 

The real-time communication allows the implemen- 

tation of eXtensible Messaging and Presence Protocol 

(XMPP) to support the IoT device management 

framework [3]. The implementation of XMPP provides 

near-real-time communication between multiple devices 

over multiple networks.

Ⅱ. PROTOTYPE ARCHITECTURE FOR 

INTELLIGENT BUILDING RELATED IoT 

APPLICATIONS WITH ITS GATEWAY

The design prototype shown in Fig. 1 consists of 

database and virtual machines as resources to carry out 

several functions from the intelligent building controls 

units. The intelligent building controls units are 

responsible of sending the measurement of sensors 

installed on the microcontroller boards. The components 

on the cloud store readings and status of these intelligent 

building control units (IBCU) periodically for further 

analysis. The components on the cloud are also 

responsible of sending control and monitoring 

commands to the sensors connected to these IBCUs. The 

IBCUs are the IoT devices nodes in charge of manage the 

data to be sent to the management components services 

on the cloud. Every IBCUs connected to the Wi-Fi 

network uses a unique IP address that can be used to 

reach that IBCU. At the IBCUs level, basic instructions 

are implemented in order to pre-process information on 

the main gateway. The client application accessible 

anywhere through either wearable device or mobile 

device discovers all the connected IBCUs and enables the 

user to start interacting with them. Each IBCUs 

broadcasts itself over the network so that the cloud 

services can discover these IBCUs for reporting to the 

user.

Fig. 1 A prototype architecture for Intelligent Buildings 
(energy metering, home automation, wireless monitoring) 
related IoT environment



IoT 게이트웨이 기반의 이벤트 중심 접근 방식 응용프로그램 설계

2121

The Raspberry Pi 3 is the main gateway, whose is to 

interconnect the IBCUs to the network providers’ 

infrastructure of the system. This gateway runs a node.js 

in order to process a large number of concurrent 

connections from the end users using the intelligent 

building applications. The web socket ensures the 

communication between the cloud services and the 

raspberry Pi through an encrypted secure shell (SSH) 

tunnel. This gateway is also in charge of sending 

instruction set which is in the format of commands that 

can be communicated for performing automatic 

configuration when a new IBCU is connected to the 

intelligent building related IoT system. The instructions 

are implemented in JavaScript and are communicated to 

the microcontroller board (Arduino) devices to request 

sensors readings or to send commands to control the 

peripheral sensors. 

Finally, the end users are able to interact with the 

whole intelligent building related IoT applications using 

a secured REST API, using mobile device and 

connected wearable devices. A smart phone application 

through cloud services that give access to the gateway 

made for the purpose of controlling all the IBCUs 

currently available on the network. This is done by the 

functionality of the XMPP protocol. Upon retrieving the 

IBCUs and make request over the network in the form 

of messages that are sent to the IBCUs through the 

centralized hub.

Ⅲ. DESIGN OF THE IoT GATEWAY BASED 

EVENT-DRIVEN ARCHITECTURE

3.1. Generalized REST Event Model

Adding event-driven processing to REST APIs as an 

important concept for the emerging Internet of Things. 

REST APIs [4] provide for high level system 

interoperability and software usability, while event 

driven processing is needed for automatic capability and 

efficiency An event is a significant change in the state of 

some element of a system. Events are asynchronous, 

that is they occur at arbitrary times relative to other 

operations in the system. The generalized REST 

(REpresentation State Transfer) event model is shown 

on the Fig. 2.  

The event of new sensor data updated is processed in 

the following order :

(1) sensor data are updated when the sensor endpoint 

makes an observation and sends an update to the 

IBCUs Observable Property

(2) an Observer Notice resource informs the system to 

notice updates and forward them according to 

routing instructions contained in the Observer 

resource.

(3) The event is routed to the destination resource 

(Gateway)

(4) The Observable Property (gateway and its associated 

topic user )is updated.

(5) A handler is invoked based on an observer 

associated with the local IBCUs. This updates the 

client via smart phone.

3.2. Publish-Subscriber service based XMPP protocol 

to handle sensor updated data to the end user

Devices must communicate with each other. Device 

data then must be collected and sent to the server 

infrastructure. That server has to share device data, 

possibly providing it back to devices. The most 

implemented protocol for allowing communication are 

XMPP and MQTT [5]. XMPP (eXtensible Messaging 

Fig. 2 Generalized REST Event Model to be imple- 
mented in the proposed IoT Gateway



한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 20, No. 11 : 2119~2124 Nov. 2016

2122

and Presence Protocol) was born as a protocol for 

messaging apps. Jabber uses it, Google Talk used it. It is 

a great and reliable messaging protocol, far more 

reliable than GCM (Google Cloud Messaging)[6] is . 

MQTT (MQ Telemetry Transport) instead, was born as 

a communication protocol designed for low-power 

devices which have limited power capacity and low 

computational power. It is fast and reliable, and uses far 

less data and power than XMPP needs to do the same 

exact work. Both are good and reliable application 

protocols, even though XMPP relies on HTTP, which 

makes it automatically more heavyweight but it doesn't 

mean it's less adequate for this job.

XMPP has a Publish-Subscribe capability, generally 

referred to as PubSub [7], Publish-subscribe is a 

well-known technique that is often used in large scale 

distributed systems. Publish-Subscribe is used when 

there are lots of events happening, and entities interested 

in differing subset of the events. A mechanism where 

each entity independently tried to find out about the 

events of interest would be complex and inefficient; it 

requires resource polling  which is resource intensive 

and does not scale to very large deployments.

With the Publish-subscribe, publishers and subscribes 

are separated. Publishers classify events into topics and 

each event is sent to the Publish-Subscribe services. 

Subscribes indicate to the Publish-Subscribe service 

which topics they are interested in and receive events 

associated with each topic as they are sent to the 

Publish-Subscribe service, giving access to information 

in real time.

XMPP PubSub was central to the collection of sensor 

data from IBCUs. It is implemented on the gateway 

which is implemented on the raspeberry Pi. As shown 

on the Fig. 3, the brodcasting of new sensed data 

follows the following flow :

(1) Intelligent Building Controls units as publishers 

classify events (update of sensor data) into topics 

(monitoring of  interest area by sensor)

(2) Each event is sent to the Publish-Subscribe service 

on the Gateway

(3) Client users (as subscribers) indicate to the 

publish-Subscribe service which topics they are 

interested in

(4) Client users (subscribers) receive message 

notification associated with interest topic as they are 

sent request to the Publish-Subscribe service, giving 

access to information in real time.

XMPP client is run in the browser or Mobile APP on 

client's smartphone

3.3. Node.js for handling control commands from end 

users concurrently

Using Node.js allows to write scalable network 

applications that inherit concurrency in their design. 

This is accomplished by event-loop. To avoid blocking, 

all main Application Programming Interface (API)-calls 

that involve Input/output are asynchronous. Thus, 

instead of waiting the function to return, the event-loop 

can execute the next event in the queue, and when the 

API-call is finished it calls a callback function specified 

when the call was made. There is an infinite loop 

running in a single process that continually looks at 

what event occurred and what callbacks need to be 

executed. It deals with queuing all events automatically, 

and it keeps calling the appropriate callbacks as fast as it 

can. As a developer using Node.js, you do not really 

need to know this, though you just need to know that 
Fig. 3 Design Publish-Subscriber service for collecting 
and broadcasting new sensor data from IBCUs



IoT 게이트웨이 기반의 이벤트 중심 접근 방식 응용프로그램 설계

2123

your callbacks will be called when events occur as 

quickly as possible the task completes[8]. See Fig.4 

Node.js is based internally around the concept of an 

event loop. There is an infinite loop running in a single 

process that continually looks at what event occurred 

and what callbacks need to be executed. It deals with 

queuing all events automatically, and it keeps calling the 

appropriate callbacks as fast as it can [8]. As shown in 

the Fig. 4. the event loop queues both new requests and 

blocking I/O requests. The single-thread executes an 

event loop by setting up a simple mapping of all 

requests. The event loop gradually dequeuing request 

from the queue, then processing the request, finally 

taking the next request or waiting for new requests 

submitted[8, 9].

Ⅳ. CONCLUSION AND FUTURE WORK

This paper presented a design a prototype 

architecture for intelligent building that attests the 

capability of performing a large number of users 

accessing the intelligent buildings system concurrently. 

The XMPP protocol allows multiple connected devices 

to provide real-time communications over multiple 

networks. With the use of Node.js, an increasing 

number of requests should not have a negative effect 

when the information collected from sensors embedded 

in multiple connected devices is used as rule engines 

that support the formulation of decision logics. The 

concurrency models between single-threaded event 

loop Node.js and multi-thread approach made 

difference. To test Node.js a higher concurrency 

level-where it is supposed to surpass multi-threading. 

The XMPP Publisher subscriber service that creates a 

subscription to publish updates to the associated REST 

resource (Observable Property). This creates a graph 

link back to the data source. This pattern can be used to 

control HTTP POST, CoAP extended GET, and other 

asynchronous notification mechanisms from the 

destination endpoint. Note that Observers and 

Subscribers are ways of controlling asynchronous 

updates from either the source or the destination 

endpoints, or both. If both are used between 2 

endpoints, there is a 2 way resource graph connection 

established. The future work will focus on the 

implementation of the framework of the proposed 

prototype with node.js in intelligent buildings related 

IoT applications such as Home automation.

ACKNOWLEDGMENT

This paper was supported by Dong-Eui 

University research in 2016, National Research 

Foundation-BTP-2015DB0160001), Training 

business area of leading new business(201601 

700001) in National Research Foundation(National 

Research Foundation of Korea) in 2016. 

REFERENCES

[1] Continental Automated Buildings Association. Intelligent 

Building and the Impact of IoT [Internet]. https://www.caba. 

org/documents/forms/Prospectus-IB-IoT.pdf.

[2] N. Dabek, N. Zeldovich,, F. Kaashoek, D. Mazieres, and R. 

Fig. 4 Configuration diagram for Node.js



한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 20, No. 11 : 2119~2124 Nov. 2016

2124

Morris. “Event-driven programming for robust software”. in 

Proceeding of SIGOPS. European Workshop, pp.186-189, 

2002.

[3] S. Choi, J. Kim, J. Yun and I. Ahan, “A Tutorial for 

Energy-efficient Communication for XMPP- based Internet 

of Things,” Smart Computing Review, Vol. 3, no. 6, pp.471- 

479, 2013.

[4] Wapice Technology Partener. IoT-ticket.com REST API 

[Internet]. Available : https://www.iot-ticket.com/images/ 

Files/IoT-Ticket.com_IoT_API.pdf.

[5] K. Rose, S. Eldridge and  L. Chapin, “The Internet of Things 

: An Overview. Understanding the issues and Challenges of 

a More Connected World,” Internet Society, [Internet]. 

Available : http://www.internetsociety.org/sites/default/files/ 

ISOC-IoT-Overview-20151022.pdf.

[6] Google Cloud Messaging. Engage your users across 

Android, iOS and chrome [Internet]. Available : 

https://developers.google.com/cloud-messaging/.

[7] D.Happ, N. Karowski, T.Menzel, V. Handzski and A. 

Wolisz, “Meeting IoT platform requirements with open 

pub/sub solutions,” Annals of Telecommunications. 

[Internet]. Available : http://www.tkn.tu-berlin.de/fileadmin/ 

fg112/Papers/2016/Happ16meeting_iot_platform.pdf.

[8] Y. Z. Daniel, R. Matthew and H. Vijay, “Microarchitectural 

implications of event-driven server-side web applications,” 

in Proceedings of the 48th International Symposium on 

Microarchitecture, pp. 762-774, 2015.

[9] F. David, JavaScript: The Definitive Guide, 6th ed. United 

States of America, O’Reilly Media Pub, ch.12, pp. 289-296, 

2011.

라이오넬(Lionel Nkenyereye)

동의대학교 컴퓨터공학과 석사과정
※관심분야 : 유무선통신네트워크, 빅데이터, 안드로이드 시스템,사물의 인터넷.

장종욱(Jong-wook Jang)

1995년 2월 부산대학교 컴퓨터공학과 박사
1987년 ~ 1995년 ETRI 
2000년 2월 UMKC Post-Doc.
1995년 ~ 현재 동의대학교 컴퓨터공학과 교수
※관심분야 : 유무선통신시스템, 자동차네트워크




