DOI QR코드

DOI QR Code

Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

  • 투고 : 2015.08.04
  • 심사 : 2015.11.30
  • 발행 : 2016.02.29

초록

PURPOSE. The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling $5^{\circ}C-55^{\circ}C$ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at $137^{\circ}C$, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

키워드

참고문헌

  1. Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent 2004;92:557-62. https://doi.org/10.1016/j.prosdent.2004.09.015
  2. Tinschert J, Natt G, Mohrbotter N, Spiekermann H, Schulze KA. Lifetime of alumina-and zirconia ceramics used for crown and bridge restorations. J Biomed Mater Res B Appl Biomater, 2007;80:317-21.
  3. Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent 2007; 5:819-26
  4. Sundh A, Molin M, Sjogren G. Fracture resistance of yttrium oxide partially-stabilized zirconia allceramic bridges after veneering and mechanical fatigue testing. Dent Mater 2005;21:476-82. https://doi.org/10.1016/j.dental.2004.07.013
  5. Coelho PG, Silva NR, Bonfante EA, Guess PC, Rekow ED, Thompson VP (2009) Fatigue testing of two porcelain-zirconia all-ceramic crown systems. Dent Mater 2009;25:1122-7. https://doi.org/10.1016/j.dental.2009.03.009
  6. Heintze SD, Rousson V. Survival of zirconia-and metal-supported fixed dental prostheses: a systematic review. Int J Prosthodont 2010;23:493-502.
  7. Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater 2009; 5:1668-77. https://doi.org/10.1016/j.actbio.2008.12.016
  8. Taskonak B, Borges GA, Mecholsky JJ, Anusavice KJ, Moore BK, Yan J. The effects of viscoelastic parameters on residual stress development in a zirconia/glass bilayer dental ceramic. Dent Mater 2008;24:1149-55. https://doi.org/10.1016/j.dental.2008.01.004
  9. McLaren EA, White SN. Glass-infiltrated zirconia/alumina based ceramic for crowns and fixed partial dentures. Pract Periodontics Aesthet Dent 1999;11:985-94.
  10. Goodacre CJ, Campagni WV, Aquilino SA. Tooth preparations for complete crowns: an art form based on scientific principles. J Prosthet Dent 2001;85:363-76 https://doi.org/10.1067/mpr.2001.114685
  11. Fenske C, Jarren MP, Sadat-Khhonsari MR. Fracture strength of full ceramic crowns in dependence of the preparation width. Dtsch Zahnarztl Z 1999;54:732-34.
  12. Meier M, Fischer H, Richter EJ, Maier HR. Influence of different preparation forms on the fracture resistance of full-ceramic molar crowns. Dtsch Zahnarztl Z 1995;50:295-9.
  13. Beuer F, Edelhoff D, Gernet W, Naumann M. Effect of preparation angles on the precision of zirconia crown copings fabricated by CAD/CAM system. Dent Mater J 2008;27:814-20. https://doi.org/10.4012/dmj.27.814
  14. Vult von Steyern P. All-ceramic fixed partial dentures. Studies on aluminum oxide-and zirconium dioxide-based ceramic systems. Swed Dent J 2005;Suppl 173:61-9.
  15. Kern M. Clinical long-term survival of two-retainer and single-retainer all-ceramic resin-bonded fixed partial dentures. Quintessence Int 2005;36:141-7.
  16. Ghazal M, Kern M. The influence of antagonistic surface roughness on the wear of human enamel and nanofilled composite resin artificial teeth. J Prosthet Dent 2009;101:342-9. https://doi.org/10.1016/S0022-3913(09)60068-8
  17. Kobayashi K, Kuwajima H, Masaki T. Phase change and mechanical properties of $ZrO_2$-$Y_2O_3$ solid electrolyte after aging. Solid State Ionics 1981;3:489-93.
  18. Chevalier J, Cales B, Drouin JM. Low temperature aging of Y-TZP ceramics. J Am Ceram 1999;82:2150-4.
  19. Lughi V, Sergo V. Low temperature degradation-aging-of zirconia: a critical review of the relevant aspects in dentistry. Dent Mater 2010;26:807-20. https://doi.org/10.1016/j.dental.2010.04.006
  20. Ardlin I. Transformation-toughened zirconia for dental inlays, crowns and bridges: chemical stability and effect of lowtemperature aging on flexural strength and surface structure. Dent Mater 2002;18:590-5. https://doi.org/10.1016/S0109-5641(01)00095-1
  21. Papanagiotou HP, Morgano SM, Giordano RA, Pober R. In vitro evaluation of low-temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics. J Prosthet Dent 2006;96:154-64. https://doi.org/10.1016/j.prosdent.2006.08.004
  22. Kim JW, Covel NS, Guess PC, Rekow ED, Zhang Y. Concerns of hydrothermal degradation in CAD/CAM zirconia. J Dent Res 2010;89:91-5. https://doi.org/10.1177/0022034509354193
  23. Deville S, Chevalier J, Dauvergne C, Fantozzi G, Bartolome JF, Moya JS, Torrecillas R. Microstructural investigation of the aging behavior of (3Y-TZP)-$Al_2O_3$ composites. J Am Ceram Soc 2005;88:1273-80. https://doi.org/10.1111/j.1551-2916.2005.00221.x
  24. Snyder MD, Hogg KD. Load-to-fracture value of different all-ceramic crown systems. J Contemp Dent Pract 2005;6:54-63.
  25. Lang NP. Periodontal considerations in prosthetic dentistry. Periodontol 2000; 9:118-31.
  26. Preis V, Schmalzbauer M, Bougeard D, Schneider-Feyrer S, Rosentritt M. Surface properties of monolithic zirconia after dental adjustment treatments and in vitro wear simulation. J Dent 2015;43:133-9. https://doi.org/10.1016/j.jdent.2014.08.011
  27. Akar GC, Pekkan G, Cal E, Eskitascioglu G, Ozcan M. Effects of surface-finishing protocols on the roughness, color change, and translucency of different ceramic systems. J Prosthet Dent 2014;112:314-21. https://doi.org/10.1016/j.prosdent.2013.09.033
  28. Kou W, Molin M, Sjogren G. Surface roughness of five different dental ceramic core materials after grinding and polishing. J Oral Rehabil 2006;33:117-24. https://doi.org/10.1111/j.1365-2842.2006.01546.x
  29. Monasky GE, Taylor DF. Studies on the wear of porcelain, enamel, and gold. J Prosthet Dent 1971;25:299-306. https://doi.org/10.1016/0022-3913(71)90191-0
  30. Oh WS, Delong R, Anusavice KJ. Factors affecting enamel and ceramic wear: a literature review. J Prosthet Dent 2002; 87:451-9. https://doi.org/10.1067/mpr.2002.123851
  31. Kosmac T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater 1999;15:426-33. https://doi.org/10.1016/S0109-5641(99)00070-6
  32. Rosentritt M, Behr M, van der Zel JM, Feilzer AJ. Approach for valuating the influence of laboratory simulation. Dent Mater 2009;25:348-52. https://doi.org/10.1016/j.dental.2008.08.009
  33. DeLong R, Douglas WH. An artificial oral environment for testing dental materials. IEEE Trans Biomater Eng 1991;38:339-45. https://doi.org/10.1109/10.133228
  34. Krejci I, Reich T, Lutz F, Albertson M. In-vitro test method for evaluation of dental restorations. Schweiz Monatsschr Zahnmed 1990;100:8-12.
  35. Teoh SH, Ong LF, Yap AU, Hastings GW. Bruxing-type dental wear simulator for ranking of dental restorative materials. J Biomed Mater Res 1998;43:175-83. https://doi.org/10.1002/(SICI)1097-4636(199822)43:2<175::AID-JBM12>3.0.CO;2-H
  36. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999;27:89-99. https://doi.org/10.1016/S0300-5712(98)00037-2
  37. Senyilmaz DP, Canay S, Heydecke G, Strub JR. Influence of thermomechanical fatigue loading on the fracture resistance of all-ceramic posterior crowns. Eur J Prosthodont Restor Dent, 2010;18:50-4.
  38. Lee JK, Kim H. Surface crack initiation in 2Y-TZP ceramics by low temperature aging. Ceram Int 1994;20:413-8. https://doi.org/10.1016/0272-8842(94)90028-0
  39. Lance MJ, Vogel EM, Reith LA, Cannon RW. Lowtemperature aging of zirconia ferrules for optical connectors. J Am Ceram Soc 2001;84:2731-3. https://doi.org/10.1111/j.1151-2916.2001.tb01085.x
  40. Zhenglan L, Danyu J, Lei H, Guoqiang Z, Qiang L, Cheng Z. Low temperature degradation of yttria stabilized zirconia. Key Engineering Mater 2007;336-338:1188-9. https://doi.org/10.4028/www.scientific.net/KEM.336-338.1188

피인용 문헌

  1. study vol.9, pp.3, 2017, https://doi.org/10.4047/jap.2017.9.3.208
  2. Comparative fracture behavior of monolithic and veneered zirconia posterior fixed dental prostheses vol.36, pp.6, 2017, https://doi.org/10.4012/dmj.2016-391
  3. Retrospective clinical evaluation of posterior monolithic zirconia restorations after 1 to 3.5 years of clinical service vol.60, pp.1, 2016, https://doi.org/10.2334/josnusd.17-0176
  4. Monolithic zirconia crowns - wall thickness, surface treatment and load at fracture vol.6, pp.1, 2016, https://doi.org/10.1080/26415275.2019.1642112
  5. Monolithic Zirconia: An Update to Current Knowledge. Optical Properties, Wear, and Clinical Performance vol.7, pp.3, 2016, https://doi.org/10.3390/dj7030090
  6. Current status on lithium disilicate and zirconia: a narrative review vol.19, pp.1, 2016, https://doi.org/10.1186/s12903-019-0838-x
  7. Root canal reconstruction using biological dentin posts: A 3D finite element analysis vol.13, pp.4, 2016, https://doi.org/10.15171/joddd.2019.042
  8. Influence of preparation design on fracture resistance of different monolithic zirconia crowns: A comparative study vol.11, pp.6, 2016, https://doi.org/10.4047/jap.2019.11.6.324
  9. Assessment of Teeth Prepared by Senior Dental Students for CAD/CAM Restorations vol.84, pp.3, 2016, https://doi.org/10.21815/jde.019.178
  10. Cracked Tooth Syndrome Management Part 2: Integrating the Old with the New vol.47, pp.7, 2016, https://doi.org/10.12968/denu.2020.47.7.570
  11. Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness vol.12, pp.5, 2016, https://doi.org/10.4047/jap.2020.12.5.283
  12. Strength and aging resistance of monolithic zirconia: an update to current knowledge vol.56, pp.1, 2016, https://doi.org/10.1016/j.jdsr.2019.09.002
  13. Effect of artificial aging on high translucent dental zirconia: simulation of early failure vol.128, pp.6, 2016, https://doi.org/10.1111/eos.12739
  14. In Vitro Fatigue and Fracture Load of Monolithic Ceramic Crowns Supported by Hybrid Abutment vol.15, pp.1, 2016, https://doi.org/10.2174/1874210602115010664
  15. Assessment of Tooth Preparations Submitted to Dental Laboratories for Fabrication of Monolithic Zirconia Crowns vol.9, pp.10, 2016, https://doi.org/10.3390/dj9100112
  16. Evaluation of Marginal/Internal Fit and Fracture Load of Monolithic Zirconia and Zirconia Lithium Silicate (ZLS) CAD/CAM Crown Systems vol.14, pp.21, 2016, https://doi.org/10.3390/ma14216346