DOI QR코드

DOI QR Code

방사선 치료시 배경분리알고리즘을 이용한 비젼모니터링 시스템에 대한 연구

Studies of vision monitoring system using a background separation algorithm during radiotherapy

  • Park, Kiyong (Graduate School of Software, Soongsil University) ;
  • Choi, Jaehyun (Graduate School of Software, Soongsil University) ;
  • Park, Jeawon (Graduate School of Software, Soongsil University)
  • 투고 : 2015.12.23
  • 심사 : 2016.01.14
  • 발행 : 2016.02.29

초록

방사선 치료에 있어서 정상 조직에는 방사선을 최소화 하고 종양 부위에 정확한 방사선을 집중해서 조사하여 국소 종양 제어율(Local Tumor Rate)을 극대화 하는 것이 가장 중요하다. 이를 위해서 초기에는 치료사들이 직접 환자의 움직임을 감지했으나 정확도가 떨어지고 치료사들의 피로가 가중되는 문제점들이 있었다. 또한 웹카메라를 이용하여 기준영상과 갱신되는 영상의 차분값을 계산하여 그 결과가 기준값을 초과하면 움직임이 발생한 것으로 판단하는 시스템을 사용하였다. 그러나 이 시스템은 환자의 움직임을 정량적으로 분석할 수 없고 토모치료기의 치료베드 이동시 변화되는 배경을 환자와 가려낼 수 없었다. 이에 본 논문에서는 이러한 한계점을 해결하고자 지수가중치(${\alpha}$) 필터를 이용하여 환자의 움직임을 정량화 하고 환자와 치료환경의 배경이미지를 분리하여 치료중 환자의 움직임만을 감지하여 환자의 움직임으로 인한 문제를 줄일 수 있었다.

The normal tissue in radiation therapy, to minimize radiation, it is most important to maximize local tumor control rates in intensive research the exact dose to the tumor sites. Therefore, the initial, therapist accuracy of detecting movement of the patient fatigue therapist has been a problem that is weighted down directly. Also, by using a web camera, a difference value between the image to be updated to the reference image is calculated, if the result exceeds the reference value, using the system for determining the motion has occurred. However, this system, it is not possible to quantitatively analyze the movement of the patient, the background is changed when moving the treatment bed in the co-therapeutic device was not able to sift the patient. In this paper, using a alpah(${\alpha}$) filter index is an attempt to solve these limitations points, quantifies the movement of the patient, by separating a background image of the patient and treatment environment, and movement of the patient during treatment It senses only, it was possible to reduce the problems due to patient movement.

키워드

참고문헌

  1. G.J.Kim, J.Y.Hong, and S.H.Han, "Analysis of Correlation Coefficient Between Movements of Thoracoabdominal Tumors and External Respiration Using Image Guided Radiotherapy(IGRT)," JKCA, vol. 14, pp. 362-370, Nov. 2014.
  2. S.Webb "Optimisation of conformal radiotherapy dose distribution by simulated annealing, Physics in Medicine and Biology," vol. 34, no. 10, pp. 13-49, Feb. 1989.
  3. J.S.Kim, M.K.Cho, Y.B.Cho, H.B.Youn, H.K.Kim, M., Shin, D., Lee, S., Lee, R.N., and S.Y.Park "Geometric calibration of cone-beam CT system for image guided proton therapy," Korean Journal of Medical Physics, vol. 19, no. 4, pp. 209-218, Aug. 2008.
  4. Y.J.Kim, Y.I.Jang., Y.S.Ji, J.B.Han, N.G.Choi, and S.J.Jang "Evaluation on Usefulness of Applying Body-fix to Four Dimensional Radiation Therapy," The Journal of the Korea Contents Association, vol. 13, no. 10, pp. 419-426, May 2013. https://doi.org/10.5392/JKCA.2013.13.10.419
  5. A.M. Berson, R. Emery, L. Rodriguez, G.M. Richards, Ng, T., S. Sanghavi, and J. Barsa, "Clinical experience using respiratory gated radiation therapy comparison of free-breathing and breath-hold techniques," International Journal of Radiation Oncology Biology Physics, vol. 60, no. 2, pp. 419-426, Jan. 2004. https://doi.org/10.1016/j.ijrobp.2004.03.037
  6. P.J. Keall, S.Joshi, S.S Vedam, J.V. Siebers, V.R. Kini, and R. Mohan, "Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking," Medical physics, vol. 32, no. 4, pp. 942-951, Sep. 2005. https://doi.org/10.1118/1.1879152
  7. G. Medioni, J.M. Choi, M. Labeau, J. T Leksut, and L, Meng, Member, KIICE. "3D Facial Landmark Tracking and Facial Expression Recognition," Journal of information and communication convergence engineering, vol. 11, no. 3, pp. 207-215, Sep. 2013. https://doi.org/10.6109/jicce.2013.11.3.207
  8. K.B.Kim, D.H.Song, Y.W.Woo, "Real Time Recognition of Finger-Language Using Color Information and Fuzzy Clustering Algorithm," Journal of information and communication convergence engineering, vol. 8, no. 1, pp. 19-22, Feb. 2010. https://doi.org/10.6109/jicce.2010.8.1.019
  9. K Sharma, S. lah, I.k. Moon, "GPU-Based Optimization of Self-Organizing Map Feature Matching for Real-Time Stereo Vision," Journal of information and communication convergence engineering, vol. 12, no. 2, pp. 128-134, June 2014. https://doi.org/10.6109/jicce.2014.12.2.128