References
- K. E. Ko and K. B. Sim, "A Study on Human-Robot Interface based on Imitative Learning using Computational Model of Mirror Neuron System", Journal of Korean Institute of Intelligent Systems, vol. 23, no. 6, pp. 565-570, 2013 https://doi.org/10.5391/JKIIS.2013.23.6.565
- A. Kumar, "Computer-Vision-Based Fabric Defect Detection: A Survey", IEEE Transactions on Industrial Electronics, vol. 55, pp. 348-363, 2015
- K. M. Jeong and J. H. Kim, "Face classification and analysis based on geometrical feature of face", Journal of the Korea Institute of Information and Communication Engineering, vol. 16, pp. 1495-1504, 2012 https://doi.org/10.6109/jkiice.2012.16.7.1495
- Y. Sun, X. Wang and X. Tang, "Deep Convolutional Network Cascade for Facial Point Detection", 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476-3483, 2013.
- S. Berretti, B. B. Amor, M. Daoudi and A. Del Bimbo, "3D facial expression recognition using SIFT descriptors of automatically detected keypoints", The Visual Computer, vol. 27, pp. 1021-1036, 2011. https://doi.org/10.1007/s00371-011-0611-x
- J. Wang, R. Xiong and J Chu, "Facial feature points detecting based on Gaussian Mixture Models", Pattern recognition letters, vol. 53, pp. 62-68, 2015. https://doi.org/10.1016/j.patrec.2014.11.004
- E. Owusu, Y. Zhan and Q. R. Mao, "An SVM-AdaBoost facial expression recognition system", Applied Intelligence, vol. 40, pp. 536-545, Apr 2014. https://doi.org/10.1007/s10489-013-0478-9
- H. J. Go, H. B. Kim, D. H. Yang, J. H. Park and M. G. Chun, "Face Recognition Under Ubiquitous Environments", Journal of Korean Institute of Intelligent Systems, vol. 14, no. 4, pp. 431-437, 2004 https://doi.org/10.5391/JKIIS.2004.14.4.431
-
J. Y. Kim and Y. S. Kim, "Face Tracking and Recognition in Video with PCA-based Pose-Classification and
$(2D)^2PCA$ recognition algorithm", Journal of Korean Institute of Intelligent Systems, vol. 23, no. 5, pp. 423-430, 2013 https://doi.org/10.5391/JKIIS.2013.23.5.423 - S. I. Choi, C. H. Kim and C. H. Choi, "Shadow Compensation in 2D Images for Face Recognition", Pattern Recognition, vol. 40, no. 7, pp. 2118-2125, 2007. https://doi.org/10.1016/j.patcog.2006.11.020
- S. I. Choi, "Construction of Composite Feature Vector Based on Discriminant Analysis for Face Recognition", Journal of Korea Multimedia Society, vol. 18, no. 7, pp. 834-842, 2015. https://doi.org/10.9717/kmms.2015.18.7.834
- C. M. Ma, S. H. Yoo and S. K. Oh, "Design of Face Recognition Algorithm based Optimized pRBFNNs Using Three-dimensional Scanner", Journal of Korea Institute of Intelligent Systems, vol. 22, no.6, pp. 748-753, 2012. https://doi.org/10.5391/JKIIS.2012.22.6.748
- P. Viola and M. Jones "Rapid object detection using a boosted cascade of simple features", Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511-518, 2001.
- A Jain, J Bharti and MK Gupta, "Improvements in OpenCV's Viola Jones Algorithm in Face Detection-Tilted Face Detection", International journal of Signal and Image Processing, vol. 5, pp. 21-28, 2014
- W. Wang, J. Yang, J. Xiao, S. Li and D. Zhou, "Face Recognition Based on Deep Learning", Human Centered Computing, vol. 8944, pp. 812-820, 2015.
- Y. Bengio, "Learning deep architectures for AI", Foundations and Trends(R) in Machine Learning, vol. 2, pp. 1-127, Jan 2009. https://doi.org/10.1561/2200000006
- R. Hecht-Nielsen, "Theory of the backpropagation neural network", International Joint Conference on Neural Networks, vol. 1, pp. 593-605, 1989
- Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition", Proceedings of the IEEE, vol. 86, no 11, pp. 2278-2324, 2015.
- D. M. Kwak, S. W. Park and H. N. Lee, Machine Learning to Deep Learning, PubPle, Seoul, 2015.
- J. H. Yu, S. M. Park, K. E. Ko and K. B. Sim, "Face classification using cascade facial detection and convolutional neural network", Proceeding of Korean Institute of Intelligent Systems Fall Conference, vol. 25, no. 2, pp. 157-159, 2015
Cited by
- Grading meat quality of Hanwoo based on SFTA and AdaBoost vol.26, pp.6, 2016, https://doi.org/10.5391/JKIIS.2016.26.6.433