DOI QR코드

DOI QR Code

Face Classification Using Cascade Facial Detection and Convolutional Neural Network

Cascade 안면 검출기와 컨볼루셔널 신경망을 이용한 얼굴 분류

  • Yu, Je-Hun (Department of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Sim, Kwee-Bo (Department of Electrical and Electronics Engineering, Chung-Ang University)
  • 유제훈 (중앙대학교 전자전기공학과) ;
  • 심귀보 (중앙대학교 전자전기공학과)
  • Received : 2016.01.07
  • Accepted : 2016.02.11
  • Published : 2016.02.25

Abstract

Nowadays, there are many research for recognizing face of people using the machine vision. the machine vision is classification and analysis technology using machine that has sight such as human eyes. In this paper, we propose algorithm for classifying human face using this machine vision system. This algorithm consist of Convolutional Neural Network and cascade face detector. And using this algorithm, we classified the face of subjects. For training the face classification algorithm, 2,000, 3,000, and 4,000 images of each subject are used. Training iteration of Convolutional Neural Network had 10 and 20. Then we classified the images. In this paper, about 6,000 images was classified for effectiveness. And we implement the system that can classify the face of subjects in realtime using USB camera.

머신비전을 사용하여 사람의 얼굴을 인식하는 다양한 연구가 진행되고 있다. 머신비전은 기계에 시각을 부여하여 이미지를 분류 혹은 분석하는 기술을 의미한다. 본 논문에서는 이러한 머신비전 기술을 적용한 얼굴을 분류하는 알고리즘을 제안한다. 이 얼굴 분류 알고리즘을 구현하기 위해 컨볼루셔널 신경망(Convolution neural network)과 Cascade 안면 검출기를 사용하였고, 피험자들의 얼굴을 분류하였다. 구현한 얼굴 분류 알고리즘의 학습을 위해 한 피험자 당 이미지 2,000장, 3,000장, 40,00장을 10회와 20회 컨볼루셔널 신경망에 각각 반복하여 학습과 분류를 진행하였고, 학습된 컨볼루셔널 신경망과 얼굴 분류 알고리즘의 실효성을 테스트하기 위해 약 6,000장의 이미지를 분류하였다. 또한 USB 카메라 영상을 실험 데이터로 입력받아 실시간으로 얼굴을 검출하고 분류하는 시스템을 구현하였다.

Keywords

References

  1. K. E. Ko and K. B. Sim, "A Study on Human-Robot Interface based on Imitative Learning using Computational Model of Mirror Neuron System", Journal of Korean Institute of Intelligent Systems, vol. 23, no. 6, pp. 565-570, 2013 https://doi.org/10.5391/JKIIS.2013.23.6.565
  2. A. Kumar, "Computer-Vision-Based Fabric Defect Detection: A Survey", IEEE Transactions on Industrial Electronics, vol. 55, pp. 348-363, 2015
  3. K. M. Jeong and J. H. Kim, "Face classification and analysis based on geometrical feature of face", Journal of the Korea Institute of Information and Communication Engineering, vol. 16, pp. 1495-1504, 2012 https://doi.org/10.6109/jkiice.2012.16.7.1495
  4. Y. Sun, X. Wang and X. Tang, "Deep Convolutional Network Cascade for Facial Point Detection", 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476-3483, 2013.
  5. S. Berretti, B. B. Amor, M. Daoudi and A. Del Bimbo, "3D facial expression recognition using SIFT descriptors of automatically detected keypoints", The Visual Computer, vol. 27, pp. 1021-1036, 2011. https://doi.org/10.1007/s00371-011-0611-x
  6. J. Wang, R. Xiong and J Chu, "Facial feature points detecting based on Gaussian Mixture Models", Pattern recognition letters, vol. 53, pp. 62-68, 2015. https://doi.org/10.1016/j.patrec.2014.11.004
  7. E. Owusu, Y. Zhan and Q. R. Mao, "An SVM-AdaBoost facial expression recognition system", Applied Intelligence, vol. 40, pp. 536-545, Apr 2014. https://doi.org/10.1007/s10489-013-0478-9
  8. H. J. Go, H. B. Kim, D. H. Yang, J. H. Park and M. G. Chun, "Face Recognition Under Ubiquitous Environments", Journal of Korean Institute of Intelligent Systems, vol. 14, no. 4, pp. 431-437, 2004 https://doi.org/10.5391/JKIIS.2004.14.4.431
  9. J. Y. Kim and Y. S. Kim, "Face Tracking and Recognition in Video with PCA-based Pose-Classification and $(2D)^2PCA$ recognition algorithm", Journal of Korean Institute of Intelligent Systems, vol. 23, no. 5, pp. 423-430, 2013 https://doi.org/10.5391/JKIIS.2013.23.5.423
  10. S. I. Choi, C. H. Kim and C. H. Choi, "Shadow Compensation in 2D Images for Face Recognition", Pattern Recognition, vol. 40, no. 7, pp. 2118-2125, 2007. https://doi.org/10.1016/j.patcog.2006.11.020
  11. S. I. Choi, "Construction of Composite Feature Vector Based on Discriminant Analysis for Face Recognition", Journal of Korea Multimedia Society, vol. 18, no. 7, pp. 834-842, 2015. https://doi.org/10.9717/kmms.2015.18.7.834
  12. C. M. Ma, S. H. Yoo and S. K. Oh, "Design of Face Recognition Algorithm based Optimized pRBFNNs Using Three-dimensional Scanner", Journal of Korea Institute of Intelligent Systems, vol. 22, no.6, pp. 748-753, 2012. https://doi.org/10.5391/JKIIS.2012.22.6.748
  13. P. Viola and M. Jones "Rapid object detection using a boosted cascade of simple features", Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511-518, 2001.
  14. A Jain, J Bharti and MK Gupta, "Improvements in OpenCV's Viola Jones Algorithm in Face Detection-Tilted Face Detection", International journal of Signal and Image Processing, vol. 5, pp. 21-28, 2014
  15. W. Wang, J. Yang, J. Xiao, S. Li and D. Zhou, "Face Recognition Based on Deep Learning", Human Centered Computing, vol. 8944, pp. 812-820, 2015.
  16. Y. Bengio, "Learning deep architectures for AI", Foundations and Trends(R) in Machine Learning, vol. 2, pp. 1-127, Jan 2009. https://doi.org/10.1561/2200000006
  17. R. Hecht-Nielsen, "Theory of the backpropagation neural network", International Joint Conference on Neural Networks, vol. 1, pp. 593-605, 1989
  18. Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition", Proceedings of the IEEE, vol. 86, no 11, pp. 2278-2324, 2015.
  19. D. M. Kwak, S. W. Park and H. N. Lee, Machine Learning to Deep Learning, PubPle, Seoul, 2015.
  20. J. H. Yu, S. M. Park, K. E. Ko and K. B. Sim, "Face classification using cascade facial detection and convolutional neural network", Proceeding of Korean Institute of Intelligent Systems Fall Conference, vol. 25, no. 2, pp. 157-159, 2015

Cited by

  1. Grading meat quality of Hanwoo based on SFTA and AdaBoost vol.26, pp.6, 2016, https://doi.org/10.5391/JKIIS.2016.26.6.433