DOI QR코드

DOI QR Code

대형 부유식 파력-해상풍력 복합발전 구조물의 극한환경 운동 성능에 대한 실험적 연구

An Experimental Study on Dynamic Performance of Large Floating Wave-Offshore Hybrid Power Generation Platform in Extreme Conditions

  • 김경환 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부) ;
  • 홍장표 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부) ;
  • 박세완 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부) ;
  • 이강수 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부) ;
  • 홍기용 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부)
  • Kim, Kyong Hwan (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Hong, Jang Pyo (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Park, Sewan (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Lee, Kangsu (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Hong, Keyyong (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering)
  • 투고 : 2015.09.14
  • 심사 : 2016.01.28
  • 발행 : 2016.02.25

초록

본 연구에서는 대형 부유식 파력-해상풍력 복합발전 구조물의 극한환경 운동 성능에 관한 실험적 연구를 다루고 있다. 대형 부유식 복합발전 구조물에 대한 운동 성능을 평가하기 위하여 1/50 축척비의 모형을 제작하였다. 그리고 설계된 계류선의 사양에 부합하는 계류선 모형을 제작하였고 자유감쇠시험 및 static pull-out 시험을 통하여 검증하였다. 주어진 구조물의 수심을 만족하기 위하여 계류선 테이블을 도입하고 환경조건에 계류판에 따른 환경조건을 확인하였다. 모형시험에서 규칙파 중 운동응답을 확인하고 파랑, 조류, 바람의 복합환경 하중을 적용하여 극한환경 운동성능을 해석하였다. 최대 운동 및, 가속도를 계측하여 운동 안전성을 판단하였고 최대 변위와 계류 하중도 선급기준에 따라 판단하였다. 이로부터 복합발전 구조물의 운동 특성에 대하여 토의하였다.

The present study experimentally considers dynamic performance of large floating wave-offshore hybrid power generation platform in extreme conditions. In order to evaluate the motion performance of the large floating hybrid power generation platform, 1/50 scaled model was manufactured. A mooring line was also manufactured, and free-decay and static pull-out tests were carried out to check the mooring model. A mooring line table was introduced to satisfy the water depth, and environmental conditions were checked. Motion responses in regular waves were measured and complicated environmental conditions including wave, wind, and current were applied to see the dynamic performance in extreme/survival conditions. Maximum motion and acceleration were judged following the design criteria, and maximum offset and mooring tension were also checked based on the rule. The characteristics of hybrid power generation platform are discussed based on these data.

키워드

참고문헌

  1. ABS, 2013, Guide for Floating Offshore Wind Turbine Installations, American Bureau of Shipping.
  2. API RP 2SK, 2005, Recommended Practice for Design and Analysis Stationkeeping Systems for Floating Structures, 2nd Edition, American Petroleum Institute.
  3. Cermelli, C., Roddier, D. and Aubault, A., 2009, "WindFloat : A Floating Foundation for Offshore wind Turbines Part II: Hydrodynamics Analysis", Proc. of the ASME 2009 28th Int. Conf. on Ocean, Offshore and Arctic Eng., May 31 - June 5, Hawaii, USA., 135-143.
  4. Fukushima Offshore Wind Consortium, 2015, "Fukushima Floating Offshore Wind Farm Demonstration Project (Fukushima FORWARD) - Construction of Phase I", http://www.fukushimaforward.jp/english/pdf/pamphlet4.pdf (accessed September, 07, 2015).
  5. Hong, K., 2012, "Survey on Domestic and International Technologies and Market of Wave Energy Converter (파력발전 국내외 기술현황 및 미래전망)", Joint Conference of The Korean Association of Ocean Science and Technology Societies (한국해양과학기술협의회 공동학술대회), 98-106.
  6. Kim, K.H., Lee, K., Sohn, J.M., Park, S., Choi, J.S. and Hong, K., 2015, "Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation", J. Korean Soc. Mar. Environ. Energy, Vol. 13, No. 3, 1-10.
  7. Nam, B.W., Hong, S.Y., Kim, K.B., Park, J.Y. and Shin, S.H., 2011, "Numerical Analysis of Wave-induced Motion of Floating Pendulor Wave Energy Converter", J. Ocean Eng. Technol., Vol. 25, No. 4, 28-35. https://doi.org/10.5574/KSOE.2011.25.4.028
  8. Poseidon, 2015, http://www.floatingpowerplant.com (accessed by September, 07, 2015).
  9. Park, J.-H. and Shin, H., 2015, "A Study on the Optimal Shape Design of a Floating Offshore Wind Turbine", J. Soc. Nav. Archit. Kor., Vol. 52, No. 3, 171-179. https://doi.org/10.3744/SNAK.2015.52.3.171
  10. Roddier, D., Cermelli, C. and Weinstein, A., 2009, "WindFloat: A Floating Foundation for Offshore Wind Turbines Part I: Design Basis and Qualification Process", Proc. of the ASME 2009 28th Int. Conf. on Ocean, Offshore and Arctic Eng., May 31 - June 5, Hawaii, USA., 845-853.
  11. Shin, H.-K., Kim, K.-M., 2011, "Motion Analysis of 5-MW Floating Offshore Wind Turbine", J. Ocean Eng. Technol., Vol. 25, No. 5, 64-68. https://doi.org/10.5574/KSOE.2011.25.5.064
  12. Tran, T. T. and Kim, D.-H., 2015, "The Coupled Dynamic Response Computation for a Semi-submersible Platform of Floating Offshore Wind Turbine", J. Wind Eng. Ind. Aerodyn., Vol. 147, 104-119. https://doi.org/10.1016/j.jweia.2015.09.016
  13. W2-Power, 2015, http://www.pelagicpower.com (accessed by September, 07, 2015).
  14. Wave Treader, 2015, http://www.power-technology.com/projects/greenoceanenergywav/ (accessed by September, 07, 2015).
  15. WindFloat, 2015, "WindFloat", http://www.principlepowerinc.com/products/windfloat.html (accessed July, 06, 2015).
  16. WindSea, 2015, "About WindSea", http://www.windsea.no/sfiles/07/1/file/windsea.pdf (accessed July, 06, 2015).

피인용 문헌

  1. A Review of Vessel Traffic and Fishing Activity Standards for Offshore Wind Farm in Domestic Areas Based on the Analysis of Foreign Cases vol.24, pp.1, 2018, https://doi.org/10.7837/kosomes.2018.24.1.029