Selaginella tamariscina Extract Improves Scopolamine-induced Learning and Memory Dificits in Rats

부처손 추출물의 치매개선 효과 및 기전탐색

  • Chu, Soon-Ju (Department of Pharmacology, Kyungsung University) ;
  • Heo, Jin-Sun (Pharm-Steril R&D Center, Southest Medi-Chem Institue.) ;
  • Sohn, Kie-ho (Department of Pharmacology, Kyungsung University)
  • Received : 2016.07.19
  • Accepted : 2016.12.12
  • Published : 2016.12.30

Abstract

We investigated the effect of Selaginella tamariscina extract on the learning and memory impairments in scopolamine-induced (5 mg/kg, i.p.) dementia rats. Rats treated with oral tacrin (20 mg/kg, p.o.) as positive control group and S. tamariscina extract 100, 200mg/kg, p. o. (SME 100, SME 200) as experimental group had significantly reduced scopolamine-induced memory deficits in the passive avoidance test. The acetylcholine content were paralleled the results of the behavior experiment. The acetylcholine contents of the experimental groups (SME 200 group) was higher than that of control group. We also evaluated expression of VAchT, vesicular acetylcholine transporter. SME was significantly increased VAchT expression on hippocampus of scopolamine-induced dementia rats. We suggest that S. tamariscina might exert a significantly neuro-protective effect on cognitive impairment.

Keywords

References

  1. Rocca, W. A., Petersen, R. C., Knopman, D. S., Hebert, L. E., Evans, D. A., Hall, K. S., Ga,o S., Unverzagt, F. W., Langa, K. M., Larson, E. B. and White, L. R. (2011) Trends in the incidence and prevalence of Alzheimer’s disease, dementia, and cognitive impairment in the United States. Alzheimers Dement 7: 80-93. https://doi.org/10.1016/j.jalz.2010.11.002
  2. 조맹제, 김기웅, 김명희, 김문두, 김봉조, 김신겸, 김정란(2008) 치매 노인 유병률 조사, 보건복지가족부, 서울, 한국.
  3. Bartus, R. T., Dean, R. L. 3rd., Beer, B. and Lippa, A. S. (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408-414. https://doi.org/10.1126/science.7046051
  4. Chang, J. S., Lee, B. S. and Kyung, Y. G. (1992) Changes in $\gamma$-amino butyric acid(GABA) and the main constituents by a treatment conditions and of an aerobically treated green tea leaves. J. Korean Food Sci. Technol. 24: 315-319.
  5. Choi, W. H., Um, M. Y., Ahn, J. Y., Kim, S. R., Kang, M. H. and Ha, T. Y. (2004). Acetylcholinesterase inhibitory activity and protective effect against cytotoxicity of perilla seed methanol extract. J. Korean Food Sci. Technol. 36: 1026-1031.
  6. Davies, P. and Maloney, A. J. (1976) Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 2: 1403.
  7. Dawson, G. R., Bentley, G., Draper, F., Rycroft, W., Iversen, S. D. and Pagella, P. G. (1991) The behavioral effects of hepatic physostigmine: a new cholinesterase inhibitor, interests of long term and working memory in rodents. Pharmacol. Biochem. Behav. 39: 865-871. https://doi.org/10.1016/0091-3057(91)90045-4
  8. Rogers, S. L., Doody, R. S., Mohs, R. C., and Friedhoff, L. T. (1998) Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch. Intern. Med. 158: 1021-1031. https://doi.org/10.1001/archinte.158.9.1021
  9. Rosler, M. A., R. Cicin-Sain, A., Gauthier, S., Agid, Y., Dal- Bianco, P., Stahelin, H. B., Hartman, R. and Gharabawi, M. (1999) Efficacy and safety of rivastigmine in patients with Alzheimer's disease: international randomised controlled trial. BMJ. 318(7184): 633-638.
  10. 조태동 (2011) 한국의 허브, 대원사, 서울.
  11. Kim, J. H., Cho, C. W., Tai, B. H., Yang, S. Y., Choi, G. S., Kang, J. S. and Kim, Y. H. (2015) Soluble epoxide hydrolase inhibitory activity of selaginellin derivatives from Selatinella tamariscina. Molecules 20: 21405-21414. https://doi.org/10.3390/molecules201219774
  12. Nguyen, P. H., Ji, D. J., Han, Y. R., Choi, J. S. Rhyu, D. Y., Min, B. S. and Woo, M. H. (2015) Selaginellin and biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella tamariscina and their glucose uptake stimulatory effects. Bioorg. Med. Chem. 23: 3730-3737. https://doi.org/10.1016/j.bmc.2015.04.007
  13. Hsin, C. H., Wu, B. C., Chuang, C. Y., Yang, S. F., Hsieh, Y. H., Ho, H. Y., Lin, H. P., Chen, M. K. and Lin, C. W. (2013) Selaginella tamariscina extract suppresses TPA-induced invasion and metastasis through inhibition of MMP-9 in human nasopharyngeal carcinoma HONE-1 cells. BMC Complementary & Alternative Medicine 13: 234. https://doi.org/10.1186/1472-6882-13-234
  14. Yang, J. S., Lin, C. W., Hsieh, Y. S., Cheng, H. L., Leu, K. H., Yang, S. F. and Lu, K. S. (2013) Selaginella tamariscina( Beauv.) processes antimetastatic effects on human osteosarcoma cells by decreasing MMP-2 and MMP-9 secretions via p38 and Akt signaling pathways. Food Chem. Toxicol. 59: 801-807. https://doi.org/10.1016/j.fct.2013.06.028
  15. Cao, Y., Wu, Y., Zhou, X., Qian, F., Fan, H. and Wang, Q. (2012) Simultaneous determination of seleginellins and flavonoids in Selaginella tamariscina and S. pulvinata by HPLC. Zhongguo Zhong Yao Za Zhi 37: 1254-1258.
  16. Zhang, G. G., Jing, Y., Zhang, H. M., Ma, E.L., Guan, J., Xue, F. N., Liu, H. X. and Sun, X. Y. (2012) Isolation and cytotoxic activity of selaginellin derivative and biflavonoids from Selaginella tamariscina. Planta. Med. 78: 390-392. https://doi.org/10.1055/s-0031-1298175
  17. Zhang, Y. X., Li, Q. Y., Yan, L. L. and Shi, Y. (2011) Structural characterization and identification of flavonoids in Selaginella tamariscina by liquid chromatography-diodearray detection/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 25: 2173-2186. https://doi.org/10.1002/rcm.5090
  18. Jung, H. J., Park, K., Lee, I. S., Kim, H. S., Yeo, S. H., Woo, E. R. and Lee, D. G. (2007) S-phase accumulation of Candida albicans by anticandidal effect of amentoflavone isolated from Selaginella tamariscina. Biol. Pharm. Bull. 30: 1969-1971. https://doi.org/10.1248/bpb.30.1969
  19. Lee, S. H., Oh, W. H., Kim, B. Y., Ahn, S. C., Kang, D.O., Shin, D. I., Kim, J., Mheen, T. I. and Ahn, J. S. (1996) Inhibition of phospholipase C gamma 1 activity by amentoflavone isolated from Selaginella tamariscina. Planta Med. 62: 293-296. https://doi.org/10.1055/s-2006-957887
  20. Sasaki, H., Kitoh, Y., Tsukada, M., Miki, K., Koyama, K., Juliawaty, L. D., Hakim, E. H., Takahashi, K. and Kinoshita, K. (2015) Inhibitory activities of biflavonoids against amyloid-$\beta$ peptide 42 cytotoxicity in PC-12 cells. Bioorg. Med. Chem. Lett. 25: 2831-2833. https://doi.org/10.1016/j.bmcl.2015.04.106
  21. Zhang, Z., Sun, T., Niu, J. G., He, Z. Q., Liu, Y. and Wang, F. (2015) Amentoflavone protects hippocampal neurons: antiinflammatory, antioxidative and anti apoptotic effects. Neural. Regen. Res. 14: 969-978.
  22. Morris, R. (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J. NeuroSci. Methods 11: 47-60. https://doi.org/10.1016/0165-0270(84)90007-4
  23. Van der Zee, E. A., Biemans, B. A. M., Gerkema, M. P. and Daan, S. (2004) Habituation to a test apparatus during associative learning is sufficient to enhance muscarinic acethylcholine receptor-immunoreactivity in rat suprachiasmatic nucleus. J. Neuro. Sci. Res. 78: 508-519. https://doi.org/10.1002/jnr.20300
  24. Hestrin, S. (1949) The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine and its analytical application. J. Biol. Chem. 180: 249-261.
  25. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.
  27. Kruger, N. J. (1994) The Bradford method for protein quantitation. Methods Mol. Biol. 32: 9-15
  28. Bartus, R. T. (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 163: 495-529. https://doi.org/10.1006/exnr.2000.7397
  29. Casado, A., Encarnacion Lopez-Fernandez, M., Concepcion Casado, M. and de La Torre, R. (2008). Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem. Res., 33: 450-458. https://doi.org/10.1007/s11064-007-9453-3
  30. Woolf, N. J. (1997) A possible role for cholinergic neurons of the basal forebrain and pontomesencephalon in consciousness. Conscious Cong. 6: 574-596. https://doi.org/10.1006/ccog.1997.0319
  31. Wesnes, K. A., Simpson, P. M., White, L., Pinker S., Jertz, G., Murphy, M. and Sieqfried, K. (1991) Cholinesterase inhibition in the scopolamine model of dementia. Ann. N. Y. Acad. Sci. 640: 268-271. https://doi.org/10.1111/j.1749-6632.1991.tb00231.x
  32. Palmer, D., Creighton, S., Prado, V. F., Prado, M. A., Choleris, E. and Winters, B. D. (2016) Mice deficient for striatal vesicular acetylcholine transporter (VAChT) display impaired short-term but normal long-term object recognition memory. Behav. Brain Res. 311: 267-278. https://doi.org/10.1016/j.bbr.2016.05.050
  33. Ho, Y. S., and Crapo, J. D. (1988). Isolation and characterization of complementary DNAs encoding human manganese- containing superoxide dismutase. FEBS. Lett. 229: 256-260. https://doi.org/10.1016/0014-5793(88)81136-0