DOI QR코드

DOI QR Code

Characterization of Thickness and Thermoelastic Properties of Interphase in Polymer Nanocomposites using Multiscale Analysis

멀티스케일 해석을 통한 고분자 나노복합재의 계면 상 두께와 열탄성 물성 도출

  • Choi, Joonmyung (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Cho, Maenghyo (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 최준명 (서울대학교 기계항공공학부) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Received : 2016.11.03
  • Accepted : 2016.11.14
  • Published : 2016.12.30

Abstract

In this study, a multiscale method for solving a thermoelasticity problem for interphase in the polymeric nanocomposites is developed. Molecular dynamics simulation and finite element analysis were numerically combined to describe the geometrical boundaries and the local mechanical response of the interfacial region where the polymer networks were highly interacted with the nanoparticle surface. Also, the micrmechanical thermoelasticity equations were applied to the obtained equivalent continuum unit to compute the growth of interphase thickness according to the size of nanoparticles, as well as the thermal phase transition behavior at a wide range of temperatures. Accordingly, the equivalent continuum model obtained from the multiscale analysis provides a meaningful description of the thermoelastic behavior of interphase as well as its nanoparticle size effect on thermoelasticity at both below and above the glass transition temperature.

본 논문에서는 나노입자가 삽입된 고분자 복합재에서 형성되는 계면 상의 정량적인 열탄성 물성을 계산과학적 접근으로 제시하였다. 균질해법이 적용된 유한요소모델과, 미시역학법에 의한 3상 복합재의 열탄성 이론, 그리고 분자동역학 전산모사법이 본 연구에 모두 적용되었고, 이를 유기적으로 연계한 멀티스케일 모델을 수립하였다. 특히, 제시한 유한요소모델과 분자동역학 기반의 나노복합재 모델로부터 각각의 인장하중에 따른 계면의 변형에너지 밀도를 도출, 이를 직접 비교하는 과정이 본 멀티스케일 해석 과정에 포함되었다. 이로써 주어진 온도 조건에 따른 나노입자 주변의 계면 상에 대한 탄성계수와 그 두께를 물리적 엄밀해로써 정량 도출할 수 있다. 이렇게 얻은 고분자 나노복합재의 연속체모델은 다시 미시역학 모델과 연계함으로써, 최종적으로는 광범위한 온도 조건에 의한 재료의 열탄성 거동 및 유리전이거동이 계면 상의 두께와 기계적 물성에 미치는 영향에 대해 분석, 평가하였다.

Keywords

References

  1. Bhuiyan, M.A., Pucha, R.V., Karevan, M., Kalaitzidou, K. (2013) Defining the Lower and Upper Limit of the Effective Modulus of CNT/Polypropylene Composites through Integration of Modeling and Experiments, Compos. Struct., 95, pp.80-87. https://doi.org/10.1016/j.compstruct.2012.06.025
  2. Choi, J., Shin, H., Yang, S., Cho, M. (2015) The Influence of Nanoparticle Size on the Mechanical Properties of Polymer Nanocomposites and the Associated Interphase Region: A Multiscale Approach, Compos. Struct., 119, pp.365-376. https://doi.org/10.1016/j.compstruct.2014.09.014
  3. Choi, J., Yang, S., Yu, S., Cho, M. (2011) The Glass Transition and Thermoelastic Behavior of Epoxy-Based Nanocomposites: A Molecular Dynamics Study, Polymer, 52(22), pp.5197-5203. https://doi.org/10.1016/j.polymer.2011.09.019
  4. Choi, J., Yang, S., Yu, S., Shin, H., Cho, M. (2012) Method of Scale-Bridging for Thermoelasticity of Cross-Linked Epoxy/SiC Nanocomposites at a Wide Range of Temperatures, Polymer, 53(22), pp.5178-5189. https://doi.org/10.1016/j.polymer.2012.08.041
  5. Goertzen, W.K., Kessler, M.R. (2008) Thermal Expansion of Fumed Silica/Cyanate Ester Nanocomposites, J. Appl. Polymer Sci., 109, pp.647-653. https://doi.org/10.1002/app.28071
  6. Jang, J.-S., Bouveret, B, Suhr, J, Gibson, R.F. (2012) Combined Numerical/Experimental Investigation of Particle Diameter and Interphase Effects on Coefficient of Thermal Expansion and Young's Modulus of SiO2/Epoxy Nanocomposites, Polymer Compos., 33(8), pp.1415-1423. https://doi.org/10.1002/pc.22268
  7. Ray, S.S., Okamoto, M. (2003) Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing, Progress in Polymer Sci., 28, pp.1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  8. Shin, D.K., Lee, J.J. (1998) Effective Material Prperties and Thermal Stress Analysis of Epoxy Molding Compound in Electronic Packaging, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, 21(4), pp.413-421. https://doi.org/10.1109/96.730426
  9. Shin, H.S., Yang, S.H., Yu, S.Y., Chang, S.M., Cho, M.H. (2012) A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance, J. Comput. Struct. Eng. Inst. Korea, 25(4), pp.315-322. https://doi.org/10.7734/COSEIK.2012.25.4.315
  10. Yang, S.H., Yu, S.Y., Cho, M.H. (2009) A Study on the Development of Multiscale Bridging Method Considering the Particle Size and Concentration Effect of Nanocomposites, J. Comput. Struct. Eng. Inst. Korea, 22(4), pp.343-348.