DOI QR코드

DOI QR Code

Bioethanol Production from Seaweed Undaria pinnatifida Using Various Yeasts by Separate Hydrolysis and Fermentation (SHF)

갈조류 미역(Undaria pinnatifida)의 분리당화발효와 다양한 효모를 이용한 바이오에탄올의 생산

  • Nguyen, Trung Hau (Department of Biotechnology, Pukyong National University) ;
  • Ra, Chae Hun (Department of Biotechnology, Pukyong National University) ;
  • Park, Mi-Ra (Department of Biotechnology, Pukyong National University) ;
  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
  • Received : 2016.10.27
  • Accepted : 2016.11.24
  • Published : 2016.12.28

Abstract

Bioethanol was produced using the separate hydrolysis and fermentation (SHF) method with macroalgal polysaccharides from the seaweed, Undaria pinnatifida as biomass. This study focused on the pretreatment, enzymatic saccharification, and fermentation of yeasts in co-culture. Ethanol fermentation with 14.5% (w/v) seaweed hydrolysate was performed using the yeasts, Saccharomyces cerevisiae KCTC 1126 alone, Pichia angophorae KCTC 17574 alone, and their co-cultures with the yeasts either adapted to mannitol or not. Among the combinations, the co-culture of non-adapted S. cerevisiae and P. angophorae adapted to mannitol showed high bioethanol production of 12.2 g/l and an ethanol yield ($Y_{EtOH}$) of 0.41. Co-culture in the SSF process was employed in this study, to increase the ethanol yields of 35.2% and reduction of 33.3% in fermentation time. These results provide suitable information on ethanol fermentation with marine seaweeds for bioenergy production.

해조류 중 갈조류인 미역으로부터 분리당화발효(SHF)를 위한 전처리 및 효소당화를 검토하고, 기존의 분리당화발효(SHF)를 개선하기 위해 공배양발효(co-culture)를 수행하였다. 비순치 효모와 고농도 mannitol에 순치(adaptive evolution)한 효모를 이용한 공배양발효를 실시한 결과 발효 72시간에 12.2 g/l의 에탄올과 에탄올 수율($Y_{EtOH}$) 0.41을 나타내었다. 이러한 기존의 분리당화발효(SHF)를 개선한 공배양발효를 통해 에탄올 생산 수율이 0.23에서 0.41로 35.2% 증가하였으며, 에탄올 발효시간도 108시간에서 72시간으로 33.3% 감소하였다. 이러한 연구결과는 해양 바이오매스인 해조류로부터 바이오연료 생산과정에 있어 유용한 정보를 제공하는 것으로 판단된다.

Keywords

References

  1. Bothast RJ, Schlicher MA. 2005. Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 67: 19-25. https://doi.org/10.1007/s00253-004-1819-8
  2. Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, et al. 2012. Review of pretreatment processes for lignocellulosic ethanol production. Biomass. Bioenergy 46: 25-35. https://doi.org/10.1016/j.biombioe.2012.04.020
  3. Cho HY, Ra CH, Kim SK. 2014. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts. J. Microbiol. Biotechnol. 24: 264-269. https://doi.org/10.4014/jmb.1307.07054
  4. Dias MOS, Esinas AV, Nebra SA, Filho RM, Rossell CEV, Maciel MRW. 2009. Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem. Eng. Res. Des. 87: 1206-1216. https://doi.org/10.1016/j.cherd.2009.06.020
  5. Daroch M, Geng S, Wang G. 2013. Recent advances in liquid biofuel production from algal feedstocks. Appl. Energy 102: 1371-1381. https://doi.org/10.1016/j.apenergy.2012.07.031
  6. Heredia CF, Sols A, De La Fuente G. 1968. Specificity of the constitutive hexose transport in yeast. Eur. J. Biochem. 5: 321-329. https://doi.org/10.1111/j.1432-1033.1968.tb00373.x
  7. Jang JS, Cho YK, Jeong GT, Kim SK. 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed Saccharina japonica. Bioprocess Biosyst. Eng. 35: 11-18. https://doi.org/10.1007/s00449-011-0611-2
  8. Lee SM, Lee JH. 2012. Ethanol fermentation for main sugar components of brown-algae using various yeasts. J. Ind. Eng. Chem. 18: 16-18. https://doi.org/10.1016/j.jiec.2011.11.097
  9. Morimoto S, Murakami M. 1967. Studies on fermentation products from aldehyde by microorganisms: the fermentative production of furfural alcohol from furfural by yeasts (part I). J. Ferment. Technol. 45: 442-446.
  10. Palmqvist E, Almeida JS, Hahn-Hagerdal B. 1999. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol. Bioeng. 62: 447-454. https://doi.org/10.1002/(SICI)1097-0290(19990220)62:4<447::AID-BIT7>3.0.CO;2-0
  11. Ra CH, Kim SK. 2013. Optimization of pretreatment conditions and use of a two-stage fermentation process for the production of ethanol from seaweed, Saccharina japonica. Biotechnol. Bioprocess Eng. 18: 715-720. https://doi.org/10.1007/s12257-013-0019-8
  12. Sanchez-Machado DI, Lopez-Cervantes J, Paseiro-Losada P, Lopez-Hernandez J. 2004. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 85: 439-444. https://doi.org/10.1016/j.foodchem.2003.08.001
  13. Tan IS, Lee KT. 2015. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydr. Polym. 124: 311-321. https://doi.org/10.1016/j.carbpol.2015.02.046

Cited by

  1. 홍조류(Eucheuma denticulatum)를 이용한 바이오에탄올 생산 vol.45, pp.4, 2016, https://doi.org/10.4014/mbl.1709.09002
  2. Production of reducing sugar in Gracilaria verrucosa using physio-chemical pretreatment and subsequent enzymatic hydrolysis vol.60, pp.None, 2021, https://doi.org/10.1016/j.algal.2021.102531