DOI QR코드

DOI QR Code

Statistical Optimization of Culture Conditions for Enhanced Production of Trehalose by Recombinant Escherichia coli Using Crude Glycerol

폐글리세롤을 탄소원으로 트레할로스 생산을 위한 재조합 대장균 배양 조건 최적화

  • So, Hong (Department of Chemical Engineering and ERI, Gyeongsang National University) ;
  • Kim, Sung Bae (Department of Chemical Engineering and ERI, Gyeongsang National University) ;
  • Kim, Chang-Joon (Department of Chemical Engineering and ERI, Gyeongsang National University)
  • 소홍 (경상대학교 화학공학과 및 공학연구원) ;
  • 김성배 (경상대학교 화학공학과 및 공학연구원) ;
  • 김창준 (경상대학교 화학공학과 및 공학연구원)
  • Received : 2016.06.28
  • Accepted : 2016.08.11
  • Published : 2016.12.28

Abstract

This study aimed to optimize the culture conditions of recombinant Escherichia coli expressing otsBA using crude glycerol for the enhanced production of trehalose. The effects of culture temperature and isopropyl ${\beta}$-D-1-thiogalactopyranoside (IPTG)-induction were investigated. Trehalose production and cell growth were highest when cells were cultured at $37^{\circ}C$ and induced with IPTG. The concentrations of IPTG, validamycin A, and NaCl were optimized using Box-Behnken design. Statistical analyses of the experimental data revealed that the concentrations of IPTG and NaCl had significant effects on trehalose production, but that of validamycin A did not. Contour plot analysis and model calculation showed that the highest amount of trehalose could be produced at 298 mM NaCl and 0.1 mM IPTG. Under these optimal conditions, the optical density at 600 nm and trehalose production were $5.4{\pm}0.2$ and $304{\pm}15mg/l$, respectively.

전처리 폐글리세롤을 기질로 사용한 재조합 대장균 배양에서 트레할로스 생산성에 영향을 미치는 핵심 변수들을 도출하고 반응표면 분석법을 사용하여 트레할로스 생산을 극대화하기 위한 최적조건을 탐색하였다. $37^{\circ}C$에서 IPTG로 induction 하는 배양이 $27^{\circ}C$ 또는 induction 하지 않은 배양에 비하여 세포생장 및 트레할로스 생산성이 높았다. Box-Behnken design 실험계획법을 사용하여 배지중의 NaCl, 발리다마이신 및 IPTG의 농도를 최적화하였다. 통계분석결과 IPTG와 NaCl의 농도는 트레할로스 생산에 영향을 미쳤으나 발리다마신의 영향은 크지 않은 것으로 확인되었다. 등고선도 분석을 통해 298 mM NaCl이 첨가되고 0.1 mM의 IPTG로 induction되는 배양에서 가장 많은 양의 트레할로스가 생산되는 것으로 예측되었다. 최적화된 조건에서 생산 균주는 세포 밀도($OD_{600}$) $5.4{\pm}0.2$에서 $304{\pm}15mg/l$의 트레할로스를 생산하였다.

Keywords

References

  1. Cabiscol E, Tamarit J, Ros J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3: 3-8.
  2. Carneiro S, Ferreira EC, Rocha I. 2013. Metabolic responses to recombinant bioprocesses in Escherichia coli. J. Biotechnol. 164: 396-408. https://doi.org/10.1016/j.jbiotec.2012.08.026
  3. Chatzifragkou A, Dietz D, Komaitis M, Zeng A-P, Papanikolaou S. 2010. Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnol. Bioeng. 107: 76-84. https://doi.org/10.1002/bit.22767
  4. De La Cruz Rodriguez LC, Farias RN, Massa EM. 1990. Damage of Escherichia coli cells by t-butylhydroperoxide involves the respiratory chain but is independent of the presence of oxygen. Biochim. Biophys. Acta 1015: 510-516. https://doi.org/10.1016/0005-2728(90)90085-I
  5. De Mey M, De Maeseneire S, Soetaert W, Vandamme E. 2007. Minimizing acetate formation in E. coil fermentations. J. Ind. Microbiol. Biotechnol. 34: 689-700. https://doi.org/10.1007/s10295-007-0244-2
  6. Dobson R, Gray V, Rumbold K. 2012. Microbial utilization of crude glycerol for the production of value-added products. J. Ind. Microbiol. Biotechnol. 39: 217-226. https://doi.org/10.1007/s10295-011-1038-0
  7. Dvorak P, Chrast L, Nikel PI, Fedr R, Soucek K, Sedlackova M, et al. 2015. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microbiol. Cell Fact. 14: 201. https://doi.org/10.1186/s12934-015-0393-3
  8. Eiteman MA, Altman E. 2006. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24: 530-536. https://doi.org/10.1016/j.tibtech.2006.09.001
  9. Ingram LO. 1976. Adaptation of membrane lipids to alcohols. J. Bacteriol. 125: 670-678.
  10. Iturriaga G, Suarez R, Nova-Franco B. 2009. Trehalose metabolism: from osmoprotection to signaling. Int. J. Mol. Sci. 10: 3793-3810. https://doi.org/10.3390/ijms10093793
  11. Li H, Su H, Kim SB, Chang YK, Hong S-K, Seo Y-G, Kim C-J. 2012. Enhanced production of trehalose in Escherichia coli by homologous expression of otsBA in the presence of the trehalase inhibitor, validamycin A, at high osmolarity. J. Biosci. Bioeng. 113: 224-232. https://doi.org/10.1016/j.jbiosc.2011.09.018
  12. Mansell TJ, Linderman SW, Fisher AC, Delisa MP. 2010. A rapid protein folding assay for the bacterial periplasm. Prot. Sci. 19: 1079-1090. https://doi.org/10.1002/pro.388
  13. Nguyen ADQ, Kim YG, Kim SB, Kim C-J. 2013. Improved tolerance of recombinant Escherichia coli to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (otsBA) for the production of $\beta$-carotene. Biores. Technol. 143: 531-537. https://doi.org/10.1016/j.biortech.2013.06.034
  14. Passarinha LA, Bonifacio MJ, Queiroz JA. 2009. Application of a Fed-batch bioprocess for the heterologous production of hSCOMT in Escherichia coli. J. Microbiol. Biotechnol. 19: 972-981. https://doi.org/10.4014/jmb.0812.658
  15. Pyle DJ, Garcia RA, Wen Z. 2008. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J. Agric. Food Chem. 56: 3933-3939. https://doi.org/10.1021/jf800602s
  16. Ruhal R, Kataria R, Choudhury B. 2013. Trend in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microbiol. Biotechnol. 6: 493-502. https://doi.org/10.1111/1751-7915.12029
  17. Sambrook J, Russel DW. 2010. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  18. Santo GME, Perdo AQ, Oppolzer D, Bonifacio MJ, Queiroz JA. 2014. Development of fed-batch profiles for efficient biosynthesis of catechol-o-methyltransferase. Biotechnol. Rep. 3: 34-41. https://doi.org/10.1016/j.btre.2014.05.005
  19. Schiraldi C, Di Lernia I, De Rose M. 2002. Trehalose production: exploiting novel approaches. Trends Biotechnol. 20: 420-425. https://doi.org/10.1016/S0167-7799(02)02041-3
  20. Shigemoto R, Okuno T, Matsuura K. 1989. Effect of validamycin A on the activity of trehalase of Rhizoctonia solani and several scierotial fungi. Ann. Phytopath. Soc. Japan 55:238-241. https://doi.org/10.3186/jjphytopath.55.238
  21. Sivashanmugam A, Murray V, Cui C, Zhang Y, Wang J, Li Q. 2009. Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Prot. Sci. 18: 936-948. https://doi.org/10.1002/pro.102
  22. Sorensen HP, Mortensen KK. 2005. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial. Cell Fact. 4: 1. https://doi.org/10.1186/1475-2859-4-1
  23. Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA. 2006. Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl. Environ. Microbial. 72: 3653-3661. https://doi.org/10.1128/AEM.72.5.3653-3661.2006
  24. Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothun GD, Scholz C. 2012. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl. Microbiol. Biotechnol. 93: 1325-1335. https://doi.org/10.1007/s00253-011-3766-5
  25. Willey JM, Sherwood LM, Woolverton CJ. 2008. Microbiology, 7th Ed. McGraw-Hill, New York.
  26. Xu H, Sun L-P, Shi Y-Z, Wu Y-H, Zhang B, Zhao D-Q. 2008. Optimization of cultivation conditions for extracellular polysaccharide and mycelium biomass by Morchella esculenta As51620. Biochem. Eng. J. 39: 66-73. https://doi.org/10.1016/j.bej.2007.08.013
  27. Yang F, Hanna MA, Sun R, 2012. Value-added uses for glycerol-a byproduct of biodiesel production. Biotechnol. Biofuels. 5: 13. https://doi.org/10.1186/1754-6834-5-13
  28. Yoon SH, Lee YM, Kim JE, Lee SH, Lee JH, Kim JY, et al. 2006. Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol. Bioeng. 94: 1025-1032. https://doi.org/10.1002/bit.20912