DOI QR코드

DOI QR Code

Bacillus licheniformis GA9가 생산하는 키틴 분해효소의 정제 및 특성

Purification and Characterization of a Chitinolytic Enzyme Produced by Bacillus licheniformis GA9

  • 황동호 (연세대학교 생명과학기술학부) ;
  • 홍성욱 (세계김치연구소) ;
  • 황형서 (세명대학교 한방바이오융합과학부) ;
  • 정건섭 (연세대학교 생명과학기술학부)
  • Hwang, Dong Ho (Division of Biological Science and Technology, Yonsei University) ;
  • Hong, Sung Wook (World Institute of Kimchi) ;
  • Hwang, Hyung seo (School of Integrated Oriental Medical Bioscience, Semyung University) ;
  • Chung, Kun Sub (Division of Biological Science and Technology, Yonsei University)
  • 투고 : 2016.07.18
  • 심사 : 2016.11.19
  • 발행 : 2016.12.28

초록

지렁이의 장내로부터 분리한 미생물 중에서 키틴 가수분해 활성이 우수한 미생물을 선발하였으며, 이를 동정하여 Bacillus licheniformis GA9으로 명명하였다. B. licheniformis GA9이 생산하는 키틴 분해효소의 정제는 배양상등액 40-60% 황산암모늄 침전, 음이온교환 크로마토그래피, 겔 크로마토그래피를 사용하여 정제하였다. 최종적으로 정제한 키틴 분해효소는 45.2배로 정제되었고 효소단백질 회수율은 20.0%를 나타내었다. 정제한 키틴 분해효소의 분자량은 약 52.1 kDa으로 나타났으며, N-terminal amino acid sequencing 분석결과, 아미노산 서열은 D-S-G-K-N-G-K-I-I-R-Y-Y-P-IR로 확인되었다. 키틴 분해효소의 최적반응 pH와 pH 안정성을 측정한 결과, pH 5.0에서 최대 활성을 나타내었으며 pH 5.0-6.0에서 안정성을 나타내었다. 키틴 분해효소의 최적반응 온도와 온도안정성의 경우, $40^{\circ}C$에서 최대 활성을 나타내었으며, $60^{\circ}C$까지 60%의 잔존 활성을 나타내었다. 정제한 키틴 분해효소는 10 mM $Co^{2+}$ 금속이온에 의해 효소활성이 증가하였으며, $Fe^{2+}$$Cu^{2+}$ 금속이온에 의해 효소활성이 감소하였으나, EDTA 첨가시 감소한 효소활성이 일부 회복되었다. 정제한 효소의 $K_m$$V_{max}$는 각각 4.02 mg/ml와 0.52 mg/min이었다. 또한 키틴 분해효소는 생명공학, 생물의약, 농업, 식품영양 등 다양한 산업분야에서 응용이 가능하다.

A bacterium producing a large amount of chitinolytic enzyme was isolated from the intestinal tract of earthworm. The isolate was identified as Bacillus licheniformis by 16S ribosomal RNA analysis and designated as B. licheniformis GA9. The enzyme was purified by 40-60% ammonium sulfate precipitation, diethyl-aminoethyl groups exchange chromatography, and gel filtration chromatography. The molecular weight was estimated to be 52.1 kDa and the N-terminal amino acid sequence was D-S-G-K-N-G-K-I-I-R-Y-YP-I-R. The optimum activity of the purified chitinolytic enzyme was shown at pH 5.0 and $40^{\circ}C$, and the enzyme was stable in the ranges of $20-50^{\circ}C$ and pH 5.0-6.0. Enzyme activity was increased by $Co^{2+}$, while it was inhibited by $Cu^{2+}$ and $Fe^{2+}$. But it was recovered by chelating metals with ethylenediaminetetraacetic acid. The $K_m$ and $V_{max}$ values of the purified enzyme were 4.02 mg/ml and 0.52 mg/min, respectively. The chitinolytic enzyme characterized in this study has potential applications in areas such as biotechnology, biomedicine, agriculture, and nutrition.

키워드

참고문헌

  1. Baik MY, Hur NY, Oh DH. 1990. Identification, purification and properties of chitinase from Bacillus sp. YE-1213. J. Eng. Res. Inst. 22: 147-152.
  2. Bernard N. 1911. Sur la fonction fungicide des bulbes d'ophrydees. Am. Sci. Nat. Bot. 14: 221-234.
  3. Cook RJ. 1985. Biological control of plant pathogens: theory to application. J. Phytopathol. 75: 25-28. https://doi.org/10.1094/Phyto-75-25
  4. Edman P, Begg G. 1967. A protein sequenator. European J. Biochem. 1: 80-91. https://doi.org/10.1111/j.1432-1033.1967.tb00047.x
  5. Elias JA, Homer RJ, Hamid Q, Lee CG. 2005. Chitinases and chitinase-like proteins in T(H)2 inflammation and asthma. J. Allergy Clin. Immunol. 116: 497-500. https://doi.org/10.1016/j.jaci.2005.06.028
  6. Gomaa EZ. 2012. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J. Microbiol. 50: 103-111. https://doi.org/10.1007/s12275-012-1343-y
  7. Hara S, Yamamura Y, Fujii Y, Mega T, Ikenaka T. 1989. Purification and characterization of chitinase produced by Streptomyces erythraeus. J. Biochem. 105: 484-489. https://doi.org/10.1093/oxfordjournals.jbchem.a122691
  8. Hong YK, Seu JH. 1979. Purification and properties of an extracellular chitinase from Streptomyces sp. Korean J. Appl. Microbiol. Bioeng. 7: 149-155.
  9. Kirk O, Borchert TV, Fuglsang CC. 2002. Industrial enzyme applications. Curr. Opin. Biotechnol. 13: 345-351. https://doi.org/10.1016/S0958-1669(02)00328-2
  10. Kudan S, Pichyangkura R. 2009. Purification and characterization of thermostable chitinase from Bacillus licheniformis SK-1. Appl. Biochem. Biotechnol. 157: 23-35. https://doi.org/10.1007/s12010-008-8328-7
  11. Lee ET, Kim SD. 2001. An antifungal substance, 2,4-diacetylphlo-roglucinol, produced from antagonistic bacterium Psedomonas florescens 2112 against Phytophthora capsici. Korean J. Appl. Micorobiol. Biotechnol. 29: 37-42.
  12. Lee KP, Kim CN, Yu JH, Oh DH. 1990. The production and purification of chitinase from Aeromonas salmonicida YA7-625. Korean J. Appl. Microbiol. Biotechnol. 18: 599-606.
  13. Mabuchi N, Hashizume I, Araki Y. 2000. Characterization of chitinases excreted by Bacillus cereus CH. Can. J. Microbiol. 46: 370-375. https://doi.org/10.1139/w99-148
  14. Majeti NV, Kumar R. 2000. A review of chitin and chitosan applications. Reactive Funct. Polym. 46: 1-27. https://doi.org/10.1016/S1381-5148(00)00038-9
  15. Ohnishia ST, Barr JK. 1978. A simplified method of quantitating protein using the biuret and phenol reagents. Anal. Biochem. 86: 193-200. https://doi.org/10.1016/0003-2697(78)90334-2
  16. Sakai K, Yokota A, Kurokawa H, Wakayama M, Moriguchi M. 1998. Purification and characterization of three thermostable endochitinases of a noble Bacillus strain, MH-1, isolated from chitin-containing compost. Appl. Envir. Microbiol. 64: 3397-3402.
  17. Shen SS, Choi OH, Lee SM, Park CS. 2002. In vitro and in vivo activities of a biocontrol agent, Serratia plymuthica A21-4, against Phytophthora capsici. Korean J. Plant Pathol. 18: 221-224. https://doi.org/10.5423/PPJ.2002.18.4.221
  18. Shikhman AR, Kuhn K, Alaaeddine N, Lotz M. 2001. N-acetylglucosamine prevents $IL-1{\beta}$-mediated activation of human chondrocytes. J. Immunol. 166: 5155-5160. https://doi.org/10.4049/jimmunol.166.8.5155
  19. Sneath PHA. 1986. Endospore-forming gram-positive rods and cocci, pp. 1104-1139. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (eds.), Bergey's Manual of Systematic Bacteriology, vol. 2. Williams & Wilkins, Baltimore, MD, USA.
  20. Synowiecki J, Al-Khateeb NA. 2003. Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr. 43: 145-171. https://doi.org/10.1080/10408690390826473
  21. Takayanagi T, Ajisaks K, Takiguchi Y, Shirnahara K. 1991. Isolation and characterization of thermostable chitinases from Bacillus lichenijormis X-7u. Biochim. Biophys. Acta 1078: 404-410. https://doi.org/10.1016/0167-4838(91)90163-T
  22. Thamthiankul S, Suan-Ngay S, Tantimavanich S, Panbangred W. 2001. Chitinase from Bacillus thuringiensis subsp. pakistani. Appl. Microbiol. Biotechnol. 56: 395-401. https://doi.org/10.1007/s002530100630
  23. Toharisman A, Suhartono MT, Spindler-Barth M, Hwang JK, Pyun YR. 2005. Purification and characterization of a thermostable chitinase from Bacillus licheniformis Mb-2. World. J. Microbiol. Biotechnol. 21: 733-738. https://doi.org/10.1007/s11274-004-4797-1
  24. Trachuk LA, Revina LP, Shemyakina TM, Chestukhina GG, Stepanov VM. 1996. Chitinases of Bacillus licheniformis B-6839: isolation and properties. Can. J. Microbial. 42: 307-315. https://doi.org/10.1139/m96-046
  25. Wang SL, Shih IL, Liang TW, Wang CH. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J. Agric. Food Chem. 50: 2241-2248. https://doi.org/10.1021/jf010885d
  26. Wang SY, Moyneb AL, Thottappillyc G, Wua SJ, Locya RD, Singh NK. 2001. Purification and characterization of a Bacillus cereus exochitinase. Enzyme Microb. Technol. 28: 492-498. https://doi.org/10.1016/S0141-0229(00)00362-8
  27. Watanabe T, Oyanagi W, Suzuki W, Ohnishi K, Tanaka H. 1992. Structure of the gene encoding chitinase D of Bacillus circulans WL-12 and possible homology of the enzyme to other prokaryotic chitinases and class III plant chitinases. J. Bacteriol. 174: 408-414. https://doi.org/10.1128/jb.174.2.408-414.1992
  28. Wiwat C, Siwayaprahm P, Bhumiratana A. 1999. Purification and characterization of chitinase from Bacillus circulans No.41. Curr. Microbiol. 39: 134-140. https://doi.org/10.1007/s002849900434