DOI QR코드

DOI QR Code

두둑을 재활용한 한국형 무경운 농업 I. 경운방법에 따른 시설재배 토양의 물리적 특성: 균열, 관입저항, 배수, 보수력 변화

No-tillage Agriculture of Korean-Type on Recycled Ridge I. Changes in Physical Properties : Soil Crack, Penetration Resistance, Drainage, and Capacity to Retain Water at Plastic Film Greenhouse Soil by Different Tillage System

  • 양승구 (전라남도농업기술원 친환경농업연구소) ;
  • 정우진 (전남대학교 농업생명과학대학 농화학과 친환경농업연구소)
  • 투고 : 2016.06.24
  • 심사 : 2016.10.04
  • 발행 : 2016.11.30

초록

본 연구는 시설하우스 재배에서 앞그루작물 재배 시 형성된 두둑을 재활용하여 뒷그루 작물을 무경운으로 재배할 경우 토양의 이화학성과 생육 및 수량에 미치는 영향을 구명하고자 추진한 연구 결과의 일부이다. 중동통(jd)의 두둑에서 토양 균열은 관찰되었으나 고랑에서는 관찰되지 않았다. 관행 경운 토양 두둑의 길이 방향으로 경운 5개월 후에 최대 폭 30 mm, 최대 깊이 15.3 cm, 길이 37~51 cm 정도 되는 균열이 3개 정도 발생되었다. 그리고 두둑의 폭 방향에서는 길이 7~28 cm 정도 되는 균열이 7.5개 정도 발생되었다. 무경운 1년차는 두둑의 길이 방향에서 최대 폭 18 mm, 최대 깊이는 30 cm, 길이는 140~200 cm 정도 되는 균열이 1개 정도 발생되었으며, 두둑 폭 방향의 균열은 최대 폭 22 mm, 최대 깊이는 18.5 cm에 길이는 6~22 cm 정도 되는 균열이 11개 정도 발생되었다. 한편 모래함량이 많은 중동통(jd)의 무경운 2년차 토양에서 균열은 관찰되지 않았으나, 점토함량이 많은 지산통(jd) 무경운 7년차 토양에서는 균열이 관찰되었다. 중동통(jd) 시설재배의 미사질양토의 관행 경운토양 표토 1 cm 깊이의 관입저항은 59 kPa에 비하여 무경운 1년차는 유의적으로 높았다. 경운 토양 20 cm 깊이의 관입저항은 161~185 kPa 수준이었고 36~39 cm 깊이의 관입저항 503~507 kPa을 정점으로 감소되었다. 무경운 1년차 토양 관입저항은 5~30 cm 깊이까지 167~172 kPa을 유지하였으나, 43 cm 깊이에서 437 kPa를 최대값으로 감소되었다. 무경운 2년차 표토의 관입저항은 1 cm 깊이의 81 kPa에서 6 cm 깊이는 243 kPa로 직선적인 증가를 하였다. 논에서 전환한 지산통(ji) 시설 재배지의 관행 경운 토양 관입저항은 표토 1 cm 깊이로부터 52 cm 깊이까지 토양이 깊어짐에 따라서 직선적인 증가를 하였으나, 그 이상의 깊이에서는 증가되지 않았다. 그러나 두둑을 재활용한 무경운 7년차 토양의 표토 1 cm와 2 cm 깊이의 관입저항은 직선적인 증가를 보여 경운 토양에 비하여 현저하게 증가되었으나, 그 이상의 깊이에서는 거의 변동이 없었다. 지산통(ji)과 중동통(jd)의 쟁기 바닥층은 표토에서 10~12 cm 깊이, 작토층은 21 cm 깊이까지로 추정되었다. 그러나 지산통(ji)의 경운 토양의 경반층은 33~35 cm 깊이로 추정되었으나 무경운 7년차는 경반층이 토양 38~44 cm 깊이에서 흔적으로만 존재하였다. 표토의 수분함량은 관행 경운 토양과 두둑을 재활용한 무경운 토양에서 경운 방법 간에 차이가 없었으나, 20 cm 깊이의 무경운 토양 수분함량은 14%로 경운 토양 25%에 비하여 현저하게 낮았다. 1 Bar와 15 Bar에서 측정한 표토의 보수력은 관행 경운토양 비하여 두둑을 재활용한 무경운 1년차와 무경운 2년차에서 증가되었다. 그리고 무경운 2년차 심토의 보수력은 1 Bar와 3 Bar에서 경운 토양과 무경운 1년차에 비하여 증가되는 경향이었다.

This study was carried out to investigate the effect of no-tillage on sequential cropping supported from recycling of first crop ridge on the growth of pepper plant and physical properties of soil under green house condition. 1. Degree of crack on soil by tillage and no-tillage Soil cracks found in ridge and not found in row. At five months of tillage, crack number and crack length in length ridge were 3 and 37~51 cm in tillage. Maximum width and maximum depth in length ridge were 30 mm and 15.3cm in tillage. Crack number and crack length in width ridge were 7.5 and 7~28 cm in tillage. Maximum width and maximum depth in width ridge were 29 mm and 15.3 cm in tillage. At a year of no-tillage, crack number and crack length in length ridge were 1.0 and 140~200 cm in tillage. Maximum width and maximum depth in length ridge were 18 mm and 30 cm in a year of no-tillage. Crack number and crack length in width ridge were 11 and 6~22 cm in a year of no-tillage. Maximum width and maximum depth in width ridge were 22 mm and 18.5 cm in a year of no-tillage. Soil crack was not found at 2 years of no-tillage in sandy Jungdong series (jd) soil. Soil crack was found at 7 years of no-tillage in clayish Jisan series (ji) soil. 2. Penetration resistance on soil Penetration resistance was increased significantly at no-tillage in Jungdong series (jd). Depth of cultivation layer was extended at no-tillage soil compared with tillage soil. Penetration resistance of plow pan was decreased at 1 year of no-tillage compared with than tillage soil. Penetration resistance was linearly increased with increasing soil depth at tillage in Jisan series (ji). Penetration resistance on top soil was remarkably increased and then maintained continuously at no-tillage soil. 3. Drainage and moisture content of soil Moisture content of ridge in top soil was not significant difference at both tillage and no-tillage. Moisture content of ridge in 20 cm soil was 14% at no-tillage soil and 25% at tillage soil. 4. Change of capacity to retain water in soil Capacity to retain water in top soil was not significant difference at 1 bar both tillage and no-tillage. Capacity to retain water in soil was slightly higher tendency in 1 year and 2 years of no-tillage soil than tillage soil. Capacity to retain water in soil was increased at 15 bar both tillage and no-tillage. Capacity to retain water in subsoil was slightly higher tendency at 1 bar and 3 bar in 2 years of no-tillage than tillage soil and a year of no-tillage soil.

키워드

참고문헌

  1. Torres Aguilar, M. A., E. de Luna Armenteros, R. Ordonez Fernandez, and P. Gonzalez Fernandez. 2004. Digital image analysis for the estimation of cracked areas and the soil shrinkage characteristic curve in clay soils amended with composted sewage sludge. Spanish Journal of Agricultural Research 2(3): 473-479. https://doi.org/10.5424/sjar/2004023-101
  2. Benjamin, J. G. 1993. Tillage effects on near-surface soil hydraulic properties. Soil and Tillage Research 26(4): 277-288. https://doi.org/10.1016/0167-1987(93)90001-6
  3. Chertkov, V. Y. and I. Ravina. 2001. Effect of interaggregate capillary cracks on the hydraulic conductivity of swelling clay soils. Water Resources Research 37(5): 1245-1256. https://doi.org/10.1029/2000WR900319
  4. Cho, H. J., S. W. Hwang, K. H. Han, H. R. Cho, J. H. Shin, and L. Y. Kim. 2009. Physicochemical Properties of Upland Soils under Organic Farming. Korean J. Soil Sci. Fert. Vol. 42(2): 98-102.
  5. Cleik, I. 2011. Effects of tillage methods on penetration resistance, bulk density and saturated hydraulic conductivity in a clayey soil conditions. Journal of Agricultural Sciences 17: 143-156.
  6. Eswaran, H. and T. Cook. 2013. Classification and management-related properties of Vertisols. http://www.fao.org/wairdocs/ilri/x5493e/x5493e05.htm
  7. Friedrich, T., R. Derpsch, and A. Kassam. 2012. Overview of the global spread of conservation agriculture. http://factsreports.revues.org.
  8. Grossman, R. B., W. D. Nettleton, and B. R. Brasher, 1985. Application of pedology to plan response prediction for tropical vertisols. In: Proceedings of the fifth international soil classification workshop, Sudan. Soil Survey Administration, Sudan. pp. 97-116.
  9. http://notill.org/sites/default/files/economics-of-no-till-farming-by-rolf-derpsch.pdf.
  10. Khan, F. U. H., A. R. Tahir, and I. J. Yule. 2001. Intrinsic implication of different tillage practices on soil penetration resistance and crop growth. J. Int. Agri. Biol. 3(1): 23-26.
  11. Kim, M. K., S. O. Hur1, S. I. Kwon, G. B. Jung, Y. K. Sonn, S. K. Ha, and D. B. Lee. 2010. Prediction of soil erosion from agricultural uplands under precipitation change scenarios. Korean J. Soil Sci. Fert. 43: 789-792.
  12. Kim, P. J., D. K. Lee, and D. Y. Chung. 1997. Effects of soil bulk density on saturated hydraulic conductivity and solute elution patterns. J. Korea Soc. Soil Sci. Fert. 30: 234-241.
  13. Martinol, D. L., and C. F. Shaykewich. 1993. Root penetration profiles of wheat and barley as affected by soil penetration resistance in field conditions. Can. J. Soil. Sci. 193-200.
  14. Mccoy E., C. W. Boast, R. C. Stehouver, and E. J. Kladivki. 1994. Macropore hydraulics: taking a sledgehammer to classical theory. In: Soil processes and water quality (R. Lal and B.A. Stewart, eds.). Lewis Publishers, Boca Raton, FL, USA. pp. 303-347.
  15. Mitchell, A. R., and M. T. H. van Genuchten. 1992. Shrinkage of bare and cultivated soil. Soil Sci. Soc. Am. J. 56: 993-994. https://doi.org/10.2136/sssaj1992.03615995005600030053x
  16. Ok, J. H., J. L. Cho, B. M. Lee, N. H. and An, J. H. Shin. 2015. Monitoring for change of soil characteristics by repeated organic supply of comport and green manures in newly reclaimed organic upland field. Korean J. Org. Agric. 23(4): 813-827. https://doi.org/10.11625/KJOA.2015.23.4.813
  17. Radford, B. J. and R. G. H. Nielsen. 1985. Comparison of pres wheels, seed soaking and water injection as aids to sorghum and sunflower establishment in Queensland. Australian Journal of Experimental Agriculture 25(3): 656-664. https://doi.org/10.1071/EA9850656
  18. Sharratt, B., M. Zhang, and S. Sparrow. 2006. Twenty years of tillage research in subarctic Alaska I. Impact on soil strength, aggregation, roughness, and residue cover. Soil and Tillage Research 91(1-2): 75-81. https://doi.org/10.1016/j.still.2005.11.006
  19. Tang, C. S., B. Shi, C. Liu, L. Gao, I. Hilary, and I. Masce. 2011. Experimental investigation of the desiccation cracking behavior of soil layers during drying. J. Mater. Civ. Eng. 23: 873-878. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000242
  20. Thomas, G. W., and R. E. Philips. 1979. Consequences of water movement in macropores. J. Environ. Qual. 8: 149-152.
  21. Tuong, T. P., R. J. Cabangon, and M. C. S. Wopereis. 1996. Quantifying flow processes during land soaking of cracked rice soils. Soil Sci. Soc. Am. J. 60: 872-879. https://doi.org/10.2136/sssaj1996.03615995006000030028x
  22. Vaz, C. M. P., J. M. Manieri, I. de Maria, and M. Tuller. 2011. Modeling and correction of soil penetration resistance for varying soil water content. Geoderma 166: 92-101. https://doi.org/10.1016/j.geoderma.2011.07.016
  23. Xiong, D., D. Yan, Y. Long, X. Lu, J. Han, X. Han, and L. Shi. 2010. Simulation of morphological development of soil cracks in tuanmou dry-hot valley region, southwest China. Chin. Geogra. Sci. 20(2): 112-22. https://doi.org/10.1007/s11769-010-0112-2
  24. Yang, S. K., G. H. Shin, H. K. Kim, H. W. Kim, K. J. Choi, and W. J. Jung. 2015a. Effects of No-Tillage and Split Irrigation on the growth of Pepper Organically Cultivated under Plastic Film Greenhouse Condition. Korean J. Organic Agri. 23(4): 781-796. https://doi.org/10.11625/KJOA.2015.23.4.781
  25. Yang, S. K., G. H. Shin, H. K. Kim, H. W. Kim, K. J. Choi, and W. J. Jung. 2015b. Changes of chemical properties and correlation under no-tillage silt loam soil with ridge cultivation of plastics film greenhouse condition. Korean J. Soil Sci. Fert. 48(3): 170-179. https://doi.org/10.7745/KJSSF.2015.48.3.170
  26. Yang, S. K., M. K. Kim, Y. W. Seo, K. J. Choi, S. T. Lee, Y. S. Kwak, and Y. H. Lee. 2012a. Soil microbial community analysis of between no-till and tillage in a controlled horticultural field. World J Microbiol Biotechnol. 28: 1797-1801. https://doi.org/10.1007/s11274-011-0933-x
  27. Yang, S. K., Y. W. Seo, J. H. Son, J. D. Park, K. J. Choi, and W. J. Jung. 2012b. Properties of pepper growth and yield, cost down with no-tillage organic cultivation in vinyl greenhouse. Korean J. Organic Agri. 20(3): 411-422.
  28. Yang, S. K., Y. W. Seo, S. K. Kim, B. H. Kim, H. K. Kim, H. W. Kim, K. J. Choi, Y. S. Han, and W. J. Jung. 2014. Changes in physical properties especially, three phases, bulk density, porosity and correlations under no-tillage silt loam soil with ridge cultivation of rain proof plastic house. Korean J. Soil Sci. Fert. 47(4): 225-234. https://doi.org/10.7745/KJSSF.2014.47.4.225
  29. Yun, E. S., K. Y. Jung, K. D. Park, J. Y. Ko, J. S. Lee, and S. T. Park. 2009. Changes in the Soil Physical Properties of Vineyard Converted from Paddy Field. Korean J. Soil Sci. Fert. 42(3): 145-151.
  30. Yang, S. K., G. H. Shin, S. K. Kim, H. K. Kim, H. W. Kim, and W. J. Jung. 2016b. No-tillage agriculture of korean-style on recycled ridge. II. Changes in physical properties : water-stable aggregate, bulk density, and three phase ratio to retain water at plastic film greenhouse soil in no-tillage system. Korean J. Soil Sci. Fert. 24(4): 1-19.