DOI QR코드

DOI QR Code

Attenuation of Atherosclerosis by 3,4-Dihydroxy-Hydrocinnamic Acid in Rabbits by Partial Inhibition of ACAT

토끼에서 ACAT 억제에 의한 3,4-다이하이드록시 하이드로시나믹산의 동맥경화 완화 효과

  • Lee, Mi-Ran (Department of Biomedical Laboratory Science, Jungwon University) ;
  • Choi, Jae-Hoon (Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University) ;
  • Yang, Young (Research Center for Women's Disease, Department of Life Science, Sookmyung Women's University) ;
  • Oh, Ki Sook (Research Center for Women's Disease, Department of Life Science, Sookmyung Women's University) ;
  • Jeong, Tae-Sook (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Chul-Ho (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Goo Taeg (Department of Life Sciences, Ewha Womans University)
  • 이미란 (중원대학교 의료보건대학 임상병리학과) ;
  • 최재훈 (한양대학교 자연과학연구소 자연과학대학 생명과학과) ;
  • 양영 (숙명여자대학교 생명과학과 여성질환연구센터) ;
  • 오기숙 (숙명여자대학교 생명과학과 여성질환연구센터) ;
  • 정태숙 (한국생명공학연구원 산업바이오소재연구센터) ;
  • 이철호 (한국생명공학연구원 산업바이오소재연구센터) ;
  • 오구택 (이화여자대학교 생명과학과)
  • Received : 2016.10.25
  • Accepted : 2016.11.18
  • Published : 2016.12.31

Abstract

Polyphenols have been reported to have beneficial effects on cardiovascular disease. A polyphenolic compound, 3,4-dihydroxy-hydrocinnamic acid (3,4-DHHCA), has been shown to have antioxidative and antitumorigenic activities. However, the effect of 3,4-DHHCA on atherosclerosis is still unknown. Herein, we investigated the effects of 3,4-DHHCA on atherosclerosis in New Zealand White rabbits. Broad and fused fatty streak lesions were found in rabbits fed with high-cholesterol diet for 8 weeks. Administration of 3,4-DHHCA reduced atherosclerotic lesion formation and lesional accumulation of macrophage in rabbits fed with cholesterol diet without systemic or local toxicity. Hepatic acyl-coenzyme A: cholesterol acyltransferase (ACAT) activity was decreased after treatment with 3,4-DHHCA by 22% in cholesterol diet-fed rabbits compared with the control group. These results indicate that 3,4-DHHCA had antiatherogenic effects in rabbits, possibly by partial inhibition of ACAT.

폴리페놀 성분은 심혈관질환에서 좋은 효과를 나타낸다고 보고되고 있다. 폴리페놀성 화합물인 3,4-다이하이드록시 하이드로시나믹산은 항산화 활성과 항암 활성을 나타낸다고 보고되었다. 이 연구의 목적은 3,4-다이하이드록시 하이드로시나믹산이 항동맥 경화 효과를 나타내는지를 뉴질랜드 흰 토끼에서 평가하는 것이다. 8주동안 고콜레스테롤 식이를 급여한 대조그룹 토끼의 광범위한 동맥 부위에서 동맥경화 초기병변이 형성되었다. 반면에 고콜레스테롤 식이를 급여하면서 3,4-다이하이드록시 하이드로시나믹산을 투여한 토끼에서는 대조 그룹의 토끼에 비해 동맥경화 병변 형성이 감소하였고, 병변 내로 침윤한 대식세포의 양도 감소하였다. 이러한 3,4-다이하이드록시 하이드로시나믹산의 효과에서 전신적으로나 국부적으로 독성이 관찰되지 않았다. 간의 아실-코엔자임 A: 콜레스테롤 아실트렌스페라제 활성이 고콜레스테롤 식이를 급여하면서 3,4-다이하이드록시 하이드로시나믹산을 투여한 토끼에서 대조 그룹의 토끼에 비해 22% 감소하였다. 이러한 연구 결과는 3,4-다이하이드록시 하이드로시나믹산이 토끼에서 아실-코엔자임 A: 콜레스테롤 아실트렌스페라제를 억제함으로써 항동맥경화 효과를 나타낸다는 것을 증명해 준다.

Keywords

References

  1. Hansson GK, Libby P. Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res. 2015;116:307-311. https://doi.org/10.1161/CIRCRESAHA.116.301313
  2. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508-519. https://doi.org/10.1038/nri1882
  3. Hilgendorf I, Swirski FK, Robbins CS. Monocyte fate in atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35:272-279. https://doi.org/10.1161/ATVBAHA.114.303565
  4. Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation. 2014;129:1551-1559. https://doi.org/10.1161/CIRCULATIONAHA.113.005015
  5. Rong JX, Shapiro M, Trogan E, Fisher EA. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A. 2003;100:13531-13536. https://doi.org/10.1073/pnas.1735526100
  6. Vengrenyuk Y, Nishi H, Long X, Ouimet M, Savji N, Martinez FO, et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arteriosclerosis Thrombosis Vasc Biol. 2015;35:535-546. https://doi.org/10.1161/ATVBAHA.114.304029
  7. Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res. 2014;115:662-667. https://doi.org/10.1161/CIRCRESAHA.115.304634
  8. Rudel LL, Lee RG, Cockman TL. Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis. Curr Opin Lipidol. 2001;12:121-127. https://doi.org/10.1097/00041433-200104000-00005
  9. Pedersen TR. The success story of LDL cholesterol lowering. Circ Res. 2016;19;118:721-731. https://doi.org/10.1161/CIRCRESAHA.115.306297
  10. Lee JS, Bok SH, Park YB, Lee MK, Choi MS. 4-Hydroxycinnamate lowers plasma and hepatic lipids without changing antioxidant enzyme activities. Ann Nutr Metab. 2003;47:144-151. https://doi.org/10.1159/000070037
  11. Kusunoki J, Hansoty DK, Aragane K, Fallon JT, Badimon JJ, Fisher EA. Acyl-CoA:cholesterol acyltransferase inhibition reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2001;103:2604-2609. https://doi.org/10.1161/01.CIR.103.21.2604
  12. Buhman KF, Accad M and Farese RV. Mammalian acyl-CoA: cholesterol acyltransferases. Biochim Biophys Acta. 2000;1529:142-154. https://doi.org/10.1016/S1388-1981(00)00144-X
  13. Fazio S, Major AS, Swift LL, Gleaves LA, Accad M, Linton MF, et al. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest. 2001;107:163-171. https://doi.org/10.1172/JCI10310
  14. Wu C, Luan H, Zhang X, Wang S, Zhang X, Sun X, et al. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages. PLoS One. 2014;4:e95452.
  15. Noguchi N, Niki E. Phenolic antioxidants: a rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Radic Biol Med. 2000;28:1538-1546. https://doi.org/10.1016/S0891-5849(00)00256-2
  16. Xu ZR, Li JY, Dong XW, Tan ZJ, Wu WZ, Xie QM, et al. Apple polyphenols decrease atherosclerosis and hepatic steatosis in ApoE-/- mice through the $ROS/MAPK/NF-{\kappa}B$ pathway. Nutrients. 2015;7:7085-7105. https://doi.org/10.3390/nu7085324
  17. Nardini M, D'Aquino M, Tomassi G, Gentili V, Di Felice M, Scaccini C. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radical Biol Med. 1995;19:541-552. https://doi.org/10.1016/0891-5849(95)00052-Y
  18. Tanaka T, Kojima T, Kawamori T, Wang A, Suzui M, Okamoto K, et al. Inhibition of 4-nitroquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolics caffeic, ellagic, chlorogenic and ferulic acids. Carcinogenesis. 1993;14:1321-1325. https://doi.org/10.1093/carcin/14.7.1321
  19. Lee JS, Choi MS, Jeon SM, Jeong TS, Park YB, Lee MK, et al. Lipid-lowering and antioxidative activities of 3,4-di(OH)- cinnamate and 3,4-di(OH)-hydrocinnamate in cholesterol-fed rats. Clin Chim Acta. 2001;314:221-229. https://doi.org/10.1016/S0009-8981(01)00700-8
  20. Erickson SK, Shrewsbury MA, Brooks C, Meyer DJ. Rat liver acyl-coenzyme A:cholesterol acyltransferase: its regulation in vivo and some of its properties in vitro. J Lipid Res. 1980;21:930-941.
  21. Gillies PJ, Rathgeb KA, Perri MA, Robinson CS. Regulation of acyl-CoA:cholesterol acyltransferase activity in normal and atherosclerotic rabbit aortas: role of a cholesterol substrate pool. Exp Mol Pathol. 1986;44:329-339. https://doi.org/10.1016/0014-4800(86)90046-8
  22. Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovascular Pathology. 2006;15:318-330. https://doi.org/10.1016/j.carpath.2006.09.001
  23. Ikenoya M, Yoshinaka Y, Kobayashi H, Kawamine K, Shibuya K, Sato F. A selective ACAT-1 inhibitor, K-604, suppresses fatty streak lesions in fat-fed hamsters without affecting plasma cholesterol levels. Atherosclerosis. 2007;191:290-297. https://doi.org/10.1016/j.atherosclerosis.2006.05.048
  24. Tauchi Y, Yoshimi A, Shirahase H, Sato J, Ito K, Morimoto K. Inhibitory effect of acyl-CoA:cholesterol acyltransferase inhibitor-low density lipoprotein complex on experimental atherosclerosis. Biol Pharm Bull. 2003;26:73-78. https://doi.org/10.1248/bpb.26.73
  25. Nissen SE, Tuzcu EM, Brewer HB, Sipahi I, Nicholls SJ, Ganz P. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med. 2006;354:1253-1263. https://doi.org/10.1056/NEJMoa054699
  26. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357-1361. https://doi.org/10.1038/nature08938
  27. Rong JX, Blachford C, Feig JE, Bander I, Mayne J, Kusunoki J. ACAT inhibition reduces the progression of preexisting, advanced atherosclerotic mouse lesions without plaque or systemic toxicity. Arterioscler Thromb Vasc Biol. 2013;33:4-12. https://doi.org/10.1161/ATVBAHA.112.252056
  28. Yoshinaka Y, Shibata H, Kobayashi H, Kuriyama H, Shibuya K, Tanabe S. A selective ACAT-1 inhibitor, K-604, stimulates collagen production in cultured smooth muscle cells and alters plaque phenotype in apolipoprotein E-knockout mice. Atherosclerosis. 2010;213:85-91. https://doi.org/10.1016/j.atherosclerosis.2010.08.048

Cited by

  1. PI3K, Akt, p38을 포함한 인산화단백질에 대한 Cordycepin의 억제효과 vol.49, pp.2, 2016, https://doi.org/10.15324/kjcls.2017.49.2.99