Re-Interpreting the Descartes's Perspectives on the Connection of Algebra and Geometry

대수와 기하의 연결에 관한 Descartes의 관점 재조명 연구

  • Received : 2016.10.10
  • Accepted : 2016.11.10
  • Published : 2016.11.30

Abstract

The purpose of this study is to analyze Descartes's point of view on the mathematical connection of algebra and geometry which help comprehend the traditional frame with a new perspective in order to access to unsolved problems and provide useful pedagogical implications in school mathematics. To achieve the goal, researchers have historically reviewed the fundamental principle and development method's feature of analytic geometry, which stands on the basis of mathematical connection between algebra and geometry. In addition we have considered the significance of geometric solving of equations in terms of analytic geometry by analyzing related preceding researches and modern trends of mathematics education curriculum. These efforts could allow us to have discussed on some opportunities to get insight about mathematical connection of algebra and geometry via geometric approaches for solving equations using the intersection of curves represented on coordinates plane. Furthermore, we could finally provide the method and its pedagogical implications for interpreting geometric approaches to cubic equations utilizing intersection of conic sections in the process of inquiring, solving and reflecting stages.

본 연구는 대수와 기하의 영역을 연결하여 기존의 틀을 새로운 관점에서 이해하고 선대의 수학자들이 해결하지 못한 문제를 다룰 수 있었던 Descartes의 관점을 분석하고 적용 가능한 교수학적 시사점을 찾는 것을 목적으로 하고 있다. 연구의 목적을 달성하기 위하여 대수와 기하의 수학적 연결성을 기반으로 하고 있는 해석기하학의 기본 원리와 전개 방식의 특징을 조명하였으며, 국내 외 교육과정 문서 및 선행 연구를 분석하여 해석기하학의 관점에서 방정식의 기하학적 해법이 갖는 의미를 고찰하였다. 이를 바탕으로 좌표평면에 표현된 도형들의 교점으로 방정식의 기하학적 해를 제시하면서 대수와 기하의 수학적 연결성에 관한 통찰의 기회를 제공할 수 있는 가능성에 대하여 논의하였으며, 두 원뿔곡선의 교점을 활용한 삼차방정식의 기하학적 해법을 탐색 단계, 해결 단계, 반성 단계의 일련의 과정으로 해석하고 이를 교수학적으로 활용할 수 있는 방법을 제시하였다.

Keywords

References

  1. 강문봉(1992). 분석법에 관한 고찰. 대한수학교육학회 논문집, 2(2), 81-93.
  2. 교육과학기술부(2011). 수학과 교육과정. 교육과학기술부 고시 제 2011-261호 [별책 8].
  3. 교육부(2015). 수학과 교육과정. 교육부 고시 제2015-74호 [별책 8].
  4. 권영인.서보억(2007). 고등학교 도형의 방정식 단원에서 논증기하의 활용에 대한 연구. 한국수학교육학회 시리즈 E. 수학교육논문집, 21(3), 451-466.
  5. 김성준(2007). 학교수학에 제시된 분석적 아이디어의 고찰. 교과교육학연구, 11(2), 499-515.
  6. 도정철.손홍찬(2015). GSP를 사용한 기하수업에서 수준별 학생의 논증기하와 해석기하의 연결에 관한 연구. 한국학교수학회논문집, 18(4), 411-429.
  7. 박정미.이중권(2013). 동일한 수학적 상황에서 문제해결 능력 분석 연구: 방정식.부등식과 함수를 중심으로. 한국학교수학회논문집, 16(4), 883-898.
  8. 우정호(2007). 학교수학의 교육적 기초(증보판 2판). 서울대학교 출판부.
  9. 윤인준.고상숙(2012). 탐구형 소프트웨어를 활용한 해석기하에서 학습부진학생들의 개념형성에 관한 연구: 관계적.도구적 이해를 중심으로. 한국학교수학회논문집, 15(4), 643-671.
  10. 이지현.홍갑주(2008). 교과지식으로서의 유클리드 기하와 벡터기하의 연결성. 학교수학, 10(4), 573-581.
  11. 홍성관.박철호(2007). 동적기하가 원뿔곡선 문제 해결에 미치는 영향. 한국수학교육학회 시리즈 A. 수학교육, 46(3), 331-349.
  12. Allaire, P. R., & Bradley, R. E. (2001). Geometric approaches to quadratic equations from other times and places. Mathematics Teacher, 94(4), 308-319.
  13. Atiyah, M. (2001). Mathematics in the 20th Century: geometry versus algebra. Mathematics Today, 37(2), 46-53.
  14. Bayazit, I., & Aksoy, Y. (2010). Connecting representations and mathematical ideas with GeoGebra. GeoGebra International Journal of Romania, 1(1), 93-106.
  15. Berggren, J. L. (1986). Episodes in the mathematics of medieval Islam. New York: Springer-Verlag.
  16. Boyer, C. B., & Merzbach, U. C. (1991). A history of mathematics (2nd ed). New York: McGraw-Hill.
  17. Common Core State Standards Initiative(CCSSI). (2010). Common Core State Standards For Mathematics. U.S.A.
  18. Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of mind: An organizing principle for mathematics curricula. Journal of Mathematical Behavior, 15, 375-402. https://doi.org/10.1016/S0732-3123(96)90023-1
  19. Dennis, D. (1997). Rene Descartes' curve-drawing devices: Experiments in the relations between mechanical motion and symbolic language. Mathematics Magazine, 70(3). 163-174.
  20. Dennis, D. (2000). The Role of Historical Studies in Mathematics and Science Educational Research. Published in Research Design in Mathematics and Science Education. Lawrence Erlbaum Assoc. 2000. Retrieved from http://quadrivium.info/mathhistory/History.pdf.
  21. Descartes, R. (1954). The Geometry. Translated by D. E. Smith & M. L. Latham. New York, NY: Dover. (원저는 1637년에 출판).
  22. Dikovic, L. (2009). Applications geogebra into teaching some topics of mathematics at the college level. Computer Science and Information Systems, 6(2), 191-203. https://doi.org/10.2298/CSIS0902191D
  23. Dindyal, J. (2004). Algebraic thinking in geometry at high school level: Students' use of variables and unknowns. In I. Putt, R. Faragher & M. McLean (Eds.), Mathematics education for the third millennium: Towards 2010 (Proceedings of the 27th annual conference of the Mathematics Education Research Group of Australasia, Townsville) (pp. 183-190). Sydney: MERGA, Inc.
  24. Dikovic, L. (2007). The need for an inclusive framework for students' thinking in school geometry. The Montana Mathematics Enthusiast, 4(1), 73-83.
  25. Donevska-Todorova, A. (2011). Developing concept in linear algebra and analytic geometry by the integration of DGE and CAS. Proceedings of the 16th Asian Technology Conference in Mathematics (ATCM).
  26. Ertekin, E. (2014). Is cabri 3D effective for the teaching of special planes in analytic geometry?. International Journal of Educational Studies in Mathematics, 1(1), 27-36. https://doi.org/10.17278/ijesim.2014.01.003
  27. Eves, H. (1995). 수학의 역사(이우영, 신항균 역). 서울: 경문사. (원저는 1953년에 출판).
  28. Georgia Department of Education(GDE). (2014). Common Core Georgia Performance Standards Frameworks of Mathematics, CCGPS Coordinate Algebra Unit 6: Connecting Algebra and Geometry through Coordinates. U.S.A.
  29. Grabiner, J. (1995). Descartes and problem-solving. Mathematics Magazine, 68(2), 83-97. https://doi.org/10.2307/2691183
  30. Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.
  31. Knuth, E. J. (2000). Understanding connections between equations and graphs. Mathematics Teacher, 93(1), 48-53.
  32. Ljajko, E. (2013). Development of ideas in a geogebra: aided mathematics instruction. Mevlana International Journal of Education, 3(3), 1-7.
  33. Mardia, K. V. (1999). Omar Khayyam, Rene Descartes and solutions to algebraic equations. Presented to Omar Khayyam Club, London. Retrieved from http://www1.maths.leeds.ac.uk/-sta6kvm/omar.pdf.
  34. Maryland Department of Education(MDE). (2013). Maryland Common Core State Curriculum Unit Plan for Geometry. Geometry Unit 4: Connecting Algebra and Geometry through Coordinates. U.S.A.
  35. Moschkovich, J., Schoenfeld, A. H., & Arcavi, A. (1993). Aspects of understanding: On multiple perspectives and representations of linear relations and connections among them. In T. A. Romberg, E. Fennema, & T. P. Carpenter (Eds.), Integrating research on the graphical representation of functions (pp. 69-100). Hillsdale, NJ: Lawrence Erlbaum Associates.
  36. Mousoulides, N., & Gagatsis, A. (2004). Algebraic and geometric approach in function problem solving. Proceedings of the 28th PME Conference, vol 3, 385-392.
  37. National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author. 구광조, 오병승, 류희찬 공역(1992). 수학교육과정과 평가의 새로운 방향. 서울:경문사.
  38. Mousoulides, N., & Gagatsis, A. (2000). Principles and standards for school mathematics. Reston, VA: Author. 류희찬, 조완영, 이경화, 나귀수, 김남균, 방정숙 공역(2007). 학교수학을 위한 원리와 규준. 서울: 경문사.
  39. Neovius, S. (2013). Rene Descartes' Foundations of Analytic Geometry and Classification of Curves. U.U.D.M. Project Report 2013:18.
  40. Polya, G. (2005). 어떻게 문제를 풀 것인가? -수학적 사고와 방법-(우정호 역). 서울: 경문사. (원저는 1956년에 출판).
  41. Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press.
  42. Timmer, M., & Verhoef, N. (2012). Increasing insightful thinking in analytic geometry using frequent visualization and a synthetic approach. Nieuw Archief voor Wiskunde, 5/13(3), 217-219.
  43. Tossavainen, T. (2009). Who can solve 2x=1? -An analysis of cognitive load related to learning linear equation solving. The Montana Mathematics Enthusiast, 6(3), 435-448.
  44. Wagner, R. (2013). A historically and philosophically informed approach to mathematical metaphors. International Studies in the Philosophy of Science, 27(2), 109-135. https://doi.org/10.1080/02698595.2013.813257
  45. Yerushalmy, M. (1999). Making exploration visible: On software design and school algebra curriculum. International Journal for Computers in Mathematical Learning, 4(2-3), 169-189. https://doi.org/10.1023/A:1009863805300
  46. Yerushalmy, M. (2005). Function of interactive visual representations in interactive mathematical textbooks. International Journal of Computer for Mathematical learning, 10(3), 217-249. https://doi.org/10.1007/s10758-005-0538-2
  47. Yerushalmy, M., & Gilead, S. (1997). Solving equations in a technological environment. Mathematics Teacher, 90(2), 156-162.