J. Gama and I. Zliobaite, A. Bifet, M. Pechennizkiy and A. Bouchachia, "A Survey on Concept Drift Adaptation", ACM Computing Surveys, Vol. 46(4), pp. 1-37, 2014
S. Ho and H. Wechsler, "A martingale framework for detecting changes in data streams by testing exchange ability," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 12, pp. 2113-2127, 2010.https://doi.org/10.1109/TPAMI.2010.48
J. Gama. P. Medas, G. Castillo and P. Rpdrigues, Learning with drift detection, In Proceedings of SBIA Brazilian Symposium on Artificial Intelligence,2004.
M. Baena-Garcia, J. Campo-Avilla, R. Fidalgo, A. Bifet, R. Gavalda, and R. Moales-Bueno. Early drift detection method, In proceedings of ECML PKDD 2006 Workshop on Knowledge Discovery from Data Streams, 2006.
G. Ross, N. Adams, D. Tasoulis, and D. Hand, Exponentially weighted moving average charts for detecting concept drift, Pattern recognition letters, 33(2012), pp. 191-198, 2012.https://doi.org/10.1016/j.patrec.2011.08.019
P. Lindstrom, B. M. Namee and S. J. Delany, "Drift detection using uncertainty distribution divergence", IEEE11th Int. Conf. Data Mining Workshops, pp. 604-608, 2011.
T. S. Sethi, M. Kantardzic, "Don't pay for validation: Detecting drifts from unlabeled data using margin density", INNS Conference on Big Data, Volume 53, Pages 103-112, 2015.
J. Friedman and L. Rafsky, "Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests, Annals of Statistics, vol. 7(4), pp. 697-717, 1979.https://doi.org/10.1214/aos/1176344722
P. Domingos and G. Hulten, "Mining high-speed data streams," In Proceedings of International Conference on Knowledge Discovery and Data Mining, 2000.
A. bifet and R. Gavalda, "Learning from time-changing data with adaptive windowing", In Proceedings of SIAM International Conference on Data Mining, 2007.
H. Wang, W. Fan, P. Yu, and J. Han, "Mining concept-drifting data streams using ensemble classifiers," In Proceedings of International Conference on Knowledge Discovery and Data Mining, 2003.
J. Z. Kolter and M. A. Malloof, "Dynamic weighted majority: an ensemble method for drifting concepts," Journal of Machine Learning Research, vol. 8, pp. 2755-2790, 2007.
L. I. Kuncheva and C. O. Plumpton, "Adaptive learning rate for online linear discriminant classifiers," LNCS 5342, pp. 510-519, 2008.
C. Anagnostopoulos, D. Tasoulis, N. Adams, N. Pavlidis and D. Hand, Online linear and quadratic discriminant analysis with adaptive forgetting for streaming classification, Statistical analysis and data mining, vol.5, pp. 139-166, 2012.https://doi.org/10.1002/sam.10151
P. Lindstorm, S. Delany, and B. Namee, "Handling concept drift in text data stream constrained by high labelling cost," in Proceedings of Florida artificial intelligence research society conference, 2010.
N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, "Worst-case analysis of selecive sampling for linear classification," Journal of machine learning research, vol. 7, pp. 1205-1230, 2006.
S. Huang and Y. Dong, "An active learning system for mining timechanging data streams," Intelligent data analysis, vol. 11, pp. 401-419, 2007.
I. Zliobatie, A. B. abd B. Pfahringer, and G. Holmes, "Active learning with drifting streaming data," IEEE transactions on neural networks and learning systems, vol. 25(1), pp. 27-39, 2014.https://doi.org/10.1109/TNNLS.2012.2236570
Juyang Weng, Yilu Zhang, and Wey-Shiuan Hwang, "Candid covariance-free incremental principal component analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 1034-1040, 2003.https://doi.org/10.1109/TPAMI.2003.1217609
J. Yan, B. Zhang, S. Yan, N. Liu, Q. Yang, Q. Cheng, H. Li, Z. Chen, and W. Ma, "A scalable supervised algorithm for dimensionality reduction on streaming data," Information Sciences, vol. 17, no. 6, pp. 2042-2065, 2006.
X. Zeng and G. Li, "Incremental partial least squares analysis of big streaming data," Pattern Recognition, vol. 47, pp. 3726-3735, 2014.https://doi.org/10.1016/j.patcog.2014.05.022
박정희, "개념 변동 고차원 스트리밍 데이터 에 대한 차원 감소 방법", 정보처리학회 논문지: 소프트웨어 및 데이터공학, 5권 8호, 2016, 게재예정.
SPLICE-2 Comparative Evaluation: Electricity Pricing, Technical report UNSW-CSE-TR-9905 of The University of New South Wales, 1999.
J. A. Blackard and D. J. Dean, Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables, Computers and Electronics in Agriculture, 24(3) (1999), pp. 131-151, 1999.https://doi.org/10.1016/S0168-1699(99)00046-0
A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, "MOA: Massive online analysis", Journal of machine learning research, vol. 11, pp. 1601-1604, 2010.
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. Witten, "The WEKA data mining software: un update", SIGKDD Explorations Newsletter, vol. 11(1), pp. 10-18, 2009.https://doi.org/10.1145/1656274.1656278