DOI QR코드

DOI QR Code

Characteristic Analysis on Drivers' Glance Durations with Different Running Speeds on the Expressway

고속국도에서의 주행속도 차이에 따른 운전자 평균 주시시간 특성에 관한 연구

  • 심현정 (한밭대학교 도시공학과 대학원) ;
  • 도명식 (한밭대학교 도시공학과) ;
  • 정규수 (한국건설기술연구원 SOC성능연구소 ICT융합연구실)
  • Received : 2015.12.23
  • Accepted : 2016.02.01
  • Published : 2016.02.28

Abstract

Drivers can receive diverse types of traffic information through a number of methods. However, there are not enough information services considering human factors. In this study, as a basic research on human factors of the drivers, characteristic analysis on drivers' mean glance (fixation) durations with different running speeds on the expressway was performed under diverse running environments. To control variables other than running speeds, running environments were categorized into 4 types: 'daytime running without preceding vehicles', 'daytime running with preceding vehicles', 'nighttime running without preceding vehicles', and 'nighttime running with preceding vehicles'. Furthermore, ANOVA Test was used to divide speed groups. As a result of performing a multiple comparison to compare differences in glance behavior per each group, the road item and the preceding vehicles item showed an increase in mean glance durations as the speed increased, while the front view showed a decrease in mean glance durations. It was confirmed that the road sign showed no statistically significant difference in glance durations as the speed varied.

운전자는 다양한 종류의 교통정보를 여러 방식을 통해 받을 수 있지만, 인적요소를 고려한 정보 서비스는 이루어지지 않고 있다. 본 연구는 운전자 인적요소에 대한 기초 연구를 실행하기 위해 고속국도 주행 시 다양한 주행환경에서 속도의 차이에 따른 운전자 평균 주시시간의 특성 분석을 목표로 하였다. 분석 시 속도 외에 영향을 줄 수 있는 변수를 통제하기 위하여 주행상황을 '주간에 선행 차량 없이 주행', '주간에 선행 차량이 존재하는 상황에서 주행', '야간에 선행 차량 없이 주행', '야간에 선행 차량이 존재하는 상황에서 주행' 4가지로 분류하였다. ANOVA Test를 활용하여 속도 그룹을 나누었으며 그룹별 평균 주시시간의 차이를 비교하기 위해 다중비교(multiple comparison)를 한 결과 도로, 선행 차량 항목은 속도가 증가함에 따라 평균 주시시간이 증가하고 전경 항목은 평균 주시시간이 감소하는 것으로 나타났다. 도로표지 항목은 속도에 따라 주시시간의 차이가 통계적으로 무의미한 것을 확인할 수 있었다.

Keywords

References

  1. Murata T.(1973), "Statistical Aspect of Driver's Eye-Movement," Japan Society of Civil Engineers, vol. 1973, no. 213, pp.55-63.
  2. Mourant R. R. and Rockwell T. H.(1970), "Mapping Eye-Movement Patterns to the visual scene in driving: an exploratory study," Human Factors: the J. of the Human Factors and Ergonomics Society, vol. 12, no. 1, pp.81-87. https://doi.org/10.1177/001872087001200112
  3. Olson P. L., Battle D. S. and Aoki T.(1989), "Driver eye fixations under different operating conditions," in: Ann Arbor, USA: The University of Michigan Transportation Research Institute, pp.7-10.
  4. Caird J. K., Chisholm S. L. and Lockhart J.(2007), "Do in-vehicle advanced signs enhance older and younger drivers' intersection performance? Driving simulation and eye movement results," International J. of Human-Computer Studies 66, pp.132-144.
  5. Roge J., Pebayle T., Lambilliotte E., Spitzenstetter F., Giselbrecht D. and Muzet A.(2004), "Influence of age, speed and duration of monotonous driving task in traffic on the driver's useful visual field," Vision Research 44, pp.2737-2744. https://doi.org/10.1016/j.visres.2004.05.026
  6. Kim J., Kim H., Kum K. and Kim M.(2000), "A study on the driver visual behavior on highway tunnel section," Journal of Korean Society of Civil Engineering, vol. 20, no. 3D, pp.273-282.
  7. Doh T. W. and Kim W. K.(2005), "Development of road safety estimation method using driving simulator and eye camera," International Journal of Highway Engineering, vol. 7, no. 4, pp.185-202.
  8. Tivesten, E. and Dozza, M.(2014), "Driving context and visual-manual phone tasks influence glance behavior in naturalistic driving," Transportation Research Part F, vol. 26, pp.258-272. https://doi.org/10.1016/j.trf.2014.08.004

Cited by

  1. Effect of Agricultural Machine Lighting systems on Drivers Night Visibility vol.16, pp.4, 2017, https://doi.org/10.12815/kits.2017.16.4.25