References
- Bandi, N., and Vassella, E. (2011). miR-34a and miR-15a/16 are coregulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol. Cancer 10, 55. https://doi.org/10.1186/1476-4598-10-55
- Diaz-Prado, S., Cicione, C., Muinos-Lopez, E., Hermida-Gomez, T., Oreiro, N., Fernandez-Lopez, C., and Blanco, F.J. (2012). Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord. 13, 144. https://doi.org/10.1186/1471-2474-13-144
- Dong, C.G., Wu, W.K., Feng, S.Y., Wang, X.J., Shao, J.F., and Qiao, J. (2012). Co-inhibition of microRNA-10b and microRNA-21 exerts synergistic inhibition on the proliferation and invasion of human glioma cells. Int. J. Oncol. 41, 1005-1012. https://doi.org/10.3892/ijo.2012.1542
- Etich, J., Holzer, T., Pitzler, L., Bluhm, B., and Brachvogel, B. (2015). MiR-26a modulates extracellular matrix homeostasis in cartilage. Matrix Biol. 43, 27-34. https://doi.org/10.1016/j.matbio.2015.02.014
- Gosset, M., Berenbaum, F., Thirion, S., and Jacques, C. (2008). Primary culture and phenotyping of murine chondrocytes. Nat. Protoc. 3, 1253-1260. https://doi.org/10.1038/nprot.2008.95
- Guerit, D., Brondello, J.M., Chuchana, P., Philipot, D., Toupet, K., Bony, C., Jorgensen, C., and Noel, D. (2014). FOXO3A regulation by miRNA-29a Controls chondrogenic differentiation of mesenchymal stem cells and cartilage formation. Stem Cells Dev. 23, 1195-1205. https://doi.org/10.1089/scd.2013.0463
- Hsieh, J.L., Shiau, A.L., Lee, C.H., Yang, S.J., Lee, B.O., Jou, I.M., Wu, C.L., Chen, S.H., and Shen, P.C. (2013). CD8+ T cellinduced expression of tissue inhibitor of metalloproteinses-1 exacerbated osteoarthritis. Int. J. Mol. Sci. 14, 19951-19970. https://doi.org/10.3390/ijms141019951
- Hu, S., Huang, M., Nguyen, P.K., Gong, Y., Li, Z., Jia, F., Lan, F., Liu, J., Nag, D., Robbins, R.C., et al. (2011). Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation. Circulation 124, S27-34. https://doi.org/10.1161/CIRCULATIONAHA.111.017954
- Kwiecinski, M., Noetel, A., Elfimova, N., Trebicka, J., Schievenbusch, S., Strack, I., Molnar, L., von Brandenstein, M., Tox, U., Nischt, R., et al. (2011). Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction. PLoS One 6, e24568. https://doi.org/10.1371/journal.pone.0024568
- Lark, M.W., Bayne, E.K., Flanagan, J., Harper, C.F., Hoerrner, L.A., Hutchinson, N.I., Singer, II, Donatelli, S.A., Weidner, J.R., Williams, H.R., et al. (1997). Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J. Clin. Invest 100, 93-106. https://doi.org/10.1172/JCI119526
- Le, L.T., Swingler, T.E., and Clark, I.M. (2013). Review: the role of microRNAs in osteoarthritis and chondrogenesis. Arthritis Rheum. 65, 1963-1974. https://doi.org/10.1002/art.37990
- Lehar, J., Krueger, A.S., Avery, W., Heilbut, A.M., Johansen, L.M., Price, E.R., Rickles, R.J., Short, G.F., 3rd, Staunton, J.E., Jin, X., et al. (2009). Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659-666. https://doi.org/10.1038/nbt.1549
- Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. https://doi.org/10.1016/j.cell.2004.12.035
- Matsukawa, T., Sakai, T., Yonezawa, T., Hiraiwa, H., Hamada, T., Nakashima, M., Ono, Y., Ishizuka, S., Nakahara, H., Lotz, M.K., et al. (2013). MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res. Ther. 15, R28. https://doi.org/10.1186/ar4164
- Maurer, B., Stanczyk, J., Jungel, A., Akhmetshina, A., Trenkmann, M., Brock, M., Kowal-Bielecka, O., Gay, R.E., Michel, B.A., Distler, J.H., et al. (2010). MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62, 1733-1743.
- Miyaki, S., and Asahara, H. (2012). Macro view of microRNA function in osteoarthritis. Nat. Rev. Rheumatol. 8, 543-552. https://doi.org/10.1038/nrrheum.2012.128
- Miyaki, S., Sato, T., Inoue, A., Otsuki, S., Ito, Y., Yokoyama, S., Kato, Y., Takemoto, F., Nakasa, T., Yamashita, S., et al. (2010). MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24, 1173-1185. https://doi.org/10.1101/gad.1915510
- Murray, D.H., Bush, P.G., Brenkel, I.J., and Hall, A.C. (2010). Abnormal human chondrocyte morphology is related to increased levels of cell-associated IL-1beta and disruption to pericellular collagen type VI. J. Orthop. Res. 28, 1507-1514. https://doi.org/10.1002/jor.21155
- Noguchi, S., Yasui, Y., Iwasaki, J., Kumazaki, M., Yamada, N., Naito, S., and Akao, Y. (2013). Replacement treatment with microRNA- 143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett. 328, 353-361. https://doi.org/10.1016/j.canlet.2012.10.017
- Park, J.K., Lee, E.J., Esau, C., and Schmittgen, T.D. (2009). Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38, e190-199. https://doi.org/10.1097/MPA.0b013e3181ba82e1
- Park, S.J., Cheon, E.J., Lee, M.H., and Kim, H.A. (2013). MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes. Arthritis Rheum. 65, 3141-3152. https://doi.org/10.1002/art.38188
- Pencheva, N., Tran, H., Buss, C., Huh, D., Drobnjak, M., Busam, K., and Tavazoie, S.F. (2012). Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151, 1068-1082. https://doi.org/10.1016/j.cell.2012.10.028
- Salvat, C., Pigenet, A., Humbert, L., Berenbaum, F., and Thirion, S. (2005). Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage. Osteoarthritis Cartilage 13, 243-249. https://doi.org/10.1016/j.joca.2004.11.008
- Santini, P., Politi, L., Vedova, P.D., Scandurra, R., and Scotto d'Abusco, A. (2014). The inflammatory circuitry of miR-149 as a pathological mechanism in osteoarthritis. Rheumatol. Int. 34, 711-716. https://doi.org/10.1007/s00296-013-2754-8
- Small, E.M., and Olson, E.N. (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336-342. https://doi.org/10.1038/nature09783
- Song, J., Lee, M., Kim, D., Han, J., Chun, C.H., and Jin, E.J. (2013). MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res. Commun. 431, 210-214. https://doi.org/10.1016/j.bbrc.2012.12.133
- Swingler, T.E., Wheeler, G., Carmont, V., Elliott, H.R., Barter, M.J., Abu-Elmagd, M., Donell, S.T., Boot-Handford, R.P., Hajihosseini, M.K., Munsterberg, A., et al. (2012). The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 64, 1909-1919. https://doi.org/10.1002/art.34314
- Wang, B., Komers, R., Carew, R., Winbanks, C.E., Xu, B., Herman- Edelstein, M., Koh, P., Thomas, M., Jandeleit-Dahm, K., Gregorevic, P., et al. (2012). Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23, 252-265. https://doi.org/10.1681/ASN.2011010055
- Wang, M., Sampson, E.R., Jin, H., Li, J., Ke, Q.H., Im, H.J., and Chen, D. (2013). MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis. Res. Ther. 15, R5. https://doi.org/10.1186/ar4133
- Xu, J., Li, C.X., Li, Y.S., Lv, J.Y., Ma, Y., Shao, T.T., Xu, L.D., Wang, Y.Y., Du, L., Zhang, Y.P., et al. (2011). MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res. 39, 825- 836. https://doi.org/10.1093/nar/gkq832
- Yamasaki, K., Nakasa, T., Miyaki, S., Ishikawa, M., Deie, M., Adachi, N., Yasunaga, Y., Asahara, H., and Ochi, M. (2009). Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum 60, 1035-1041. https://doi.org/10.1002/art.24404
- Zhang, R., Ma, J., and Yao, J. (2013). Molecular mechanisms of the cartilage-specific microRNA-140 in osteoarthritis. Inflamm. Res. 62, 871-877. https://doi.org/10.1007/s00011-013-0654-8
- Zhu, W., Zhao, Y., Xu, Y., Sun, Y., Wang, Z., Yuan, W., and Du, Z. (2013). Dissection of protein interactomics highlights microRNA synergy. PLoS One 8, e63342. https://doi.org/10.1371/journal.pone.0063342
Cited by
- Morphological, Immunocytochemical, and Biochemical Studies of Rat Costal Chondrocytes Exposed to IL-1β and TGF-β1 vol.2017, 2017, https://doi.org/10.1155/2017/9747264
- miR-29a regulates vascular neointimal hyperplasia by targeting YY1 vol.50, pp.3, 2017, https://doi.org/10.1111/cpr.12322
- microRNA-140 Inhibits Inflammation and Stimulates Chondrogenesis in a Model of Interleukin 1β-induced Osteoarthritis vol.5, 2016, https://doi.org/10.1038/mtna.2016.64
- MicroRNAs and Autophagy: Fine Players in the Control of Chondrocyte Homeostatic Activities in Osteoarthritis vol.2017, 2017, https://doi.org/10.1155/2017/3720128
- KDM6A promotes chondrogenic differentiation of periodontal ligament stem cells by demethylation of SOX9 vol.51, pp.3, 2017, https://doi.org/10.1111/cpr.12413
- Complex Epigenetic Regulation of Chemotherapy Resistance and Biology in Esophageal Squamous Cell Carcinoma via MicroRNAs vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020499
- Interplay of Inflammatory Mediators with Epigenetics and Cartilage Modifications in Osteoarthritis vol.6, pp.2296-4185, 2018, https://doi.org/10.3389/fbioe.2018.00022
- MicroRNAs and Osteoarthritis vol.7, pp.8, 2018, https://doi.org/10.3390/cells7080092
- miR-140-5p/miR-149 Affects Chondrocyte Proliferation, Apoptosis, and Autophagy by Targeting FUT1 in Osteoarthritis vol.41, pp.3, 2018, https://doi.org/10.1007/s10753-018-0750-6
- The role of epigenetics in osteoarthritis: current perspective vol.29, pp.1, 2016, https://doi.org/10.1097/bor.0000000000000355
- p NNS-Conjugated Chitosan Mediated IGF-1 and miR-140 Overexpression in Articular Chondrocytes Improves Cartilage Repair vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/2761241
- Abnormal Expression of DICER1 Leads to Dysregulation of Inflammatory Effectors in Human Synoviocytes vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/6768504
- Interleukin-1 receptor antagonist protein (IL-1Ra) and miR-140 overexpression via pNNS-conjugated chitosan-mediated gene transfer enhances the repair of full-thickness cartilage defects in a rabbit mo vol.8, pp.3, 2016, https://doi.org/10.1302/2046-3758.83.bjr-2018-0222.r1
- MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis vol.69, pp.1, 2020, https://doi.org/10.1007/s00011-019-01294-0
- Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis vol.22, pp.4, 2016, https://doi.org/10.3390/ijms22041742