DOI QR코드

DOI QR Code

MiR-29a and MiR-140 Protect Chondrocytes against the Anti-Proliferation and Cell Matrix Signaling Changes by IL-1β

  • Li, Xianghui (Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University) ;
  • Zhen, Zhilei (Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University) ;
  • Tang, Guodong (Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University) ;
  • Zheng, Chong (Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University) ;
  • Yang, Guofu (Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University)
  • Received : 2015.06.24
  • Accepted : 2015.10.12
  • Published : 2016.02.29

Abstract

As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-$1{\beta}$. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metallopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL-$1{\beta}$ on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL-$1{\beta}$ treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-$1{\beta}$, thereby suggesting potent synergistic action. These results provided1novel insights into the important function of miRNAs' collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.

Keywords

References

  1. Bandi, N., and Vassella, E. (2011). miR-34a and miR-15a/16 are coregulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol. Cancer 10, 55. https://doi.org/10.1186/1476-4598-10-55
  2. Diaz-Prado, S., Cicione, C., Muinos-Lopez, E., Hermida-Gomez, T., Oreiro, N., Fernandez-Lopez, C., and Blanco, F.J. (2012). Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord. 13, 144. https://doi.org/10.1186/1471-2474-13-144
  3. Dong, C.G., Wu, W.K., Feng, S.Y., Wang, X.J., Shao, J.F., and Qiao, J. (2012). Co-inhibition of microRNA-10b and microRNA-21 exerts synergistic inhibition on the proliferation and invasion of human glioma cells. Int. J. Oncol. 41, 1005-1012. https://doi.org/10.3892/ijo.2012.1542
  4. Etich, J., Holzer, T., Pitzler, L., Bluhm, B., and Brachvogel, B. (2015). MiR-26a modulates extracellular matrix homeostasis in cartilage. Matrix Biol. 43, 27-34. https://doi.org/10.1016/j.matbio.2015.02.014
  5. Gosset, M., Berenbaum, F., Thirion, S., and Jacques, C. (2008). Primary culture and phenotyping of murine chondrocytes. Nat. Protoc. 3, 1253-1260. https://doi.org/10.1038/nprot.2008.95
  6. Guerit, D., Brondello, J.M., Chuchana, P., Philipot, D., Toupet, K., Bony, C., Jorgensen, C., and Noel, D. (2014). FOXO3A regulation by miRNA-29a Controls chondrogenic differentiation of mesenchymal stem cells and cartilage formation. Stem Cells Dev. 23, 1195-1205. https://doi.org/10.1089/scd.2013.0463
  7. Hsieh, J.L., Shiau, A.L., Lee, C.H., Yang, S.J., Lee, B.O., Jou, I.M., Wu, C.L., Chen, S.H., and Shen, P.C. (2013). CD8+ T cellinduced expression of tissue inhibitor of metalloproteinses-1 exacerbated osteoarthritis. Int. J. Mol. Sci. 14, 19951-19970. https://doi.org/10.3390/ijms141019951
  8. Hu, S., Huang, M., Nguyen, P.K., Gong, Y., Li, Z., Jia, F., Lan, F., Liu, J., Nag, D., Robbins, R.C., et al. (2011). Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation. Circulation 124, S27-34. https://doi.org/10.1161/CIRCULATIONAHA.111.017954
  9. Kwiecinski, M., Noetel, A., Elfimova, N., Trebicka, J., Schievenbusch, S., Strack, I., Molnar, L., von Brandenstein, M., Tox, U., Nischt, R., et al. (2011). Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction. PLoS One 6, e24568. https://doi.org/10.1371/journal.pone.0024568
  10. Lark, M.W., Bayne, E.K., Flanagan, J., Harper, C.F., Hoerrner, L.A., Hutchinson, N.I., Singer, II, Donatelli, S.A., Weidner, J.R., Williams, H.R., et al. (1997). Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J. Clin. Invest 100, 93-106. https://doi.org/10.1172/JCI119526
  11. Le, L.T., Swingler, T.E., and Clark, I.M. (2013). Review: the role of microRNAs in osteoarthritis and chondrogenesis. Arthritis Rheum. 65, 1963-1974. https://doi.org/10.1002/art.37990
  12. Lehar, J., Krueger, A.S., Avery, W., Heilbut, A.M., Johansen, L.M., Price, E.R., Rickles, R.J., Short, G.F., 3rd, Staunton, J.E., Jin, X., et al. (2009). Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659-666. https://doi.org/10.1038/nbt.1549
  13. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. https://doi.org/10.1016/j.cell.2004.12.035
  14. Matsukawa, T., Sakai, T., Yonezawa, T., Hiraiwa, H., Hamada, T., Nakashima, M., Ono, Y., Ishizuka, S., Nakahara, H., Lotz, M.K., et al. (2013). MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res. Ther. 15, R28. https://doi.org/10.1186/ar4164
  15. Maurer, B., Stanczyk, J., Jungel, A., Akhmetshina, A., Trenkmann, M., Brock, M., Kowal-Bielecka, O., Gay, R.E., Michel, B.A., Distler, J.H., et al. (2010). MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62, 1733-1743.
  16. Miyaki, S., and Asahara, H. (2012). Macro view of microRNA function in osteoarthritis. Nat. Rev. Rheumatol. 8, 543-552. https://doi.org/10.1038/nrrheum.2012.128
  17. Miyaki, S., Sato, T., Inoue, A., Otsuki, S., Ito, Y., Yokoyama, S., Kato, Y., Takemoto, F., Nakasa, T., Yamashita, S., et al. (2010). MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24, 1173-1185. https://doi.org/10.1101/gad.1915510
  18. Murray, D.H., Bush, P.G., Brenkel, I.J., and Hall, A.C. (2010). Abnormal human chondrocyte morphology is related to increased levels of cell-associated IL-1beta and disruption to pericellular collagen type VI. J. Orthop. Res. 28, 1507-1514. https://doi.org/10.1002/jor.21155
  19. Noguchi, S., Yasui, Y., Iwasaki, J., Kumazaki, M., Yamada, N., Naito, S., and Akao, Y. (2013). Replacement treatment with microRNA- 143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett. 328, 353-361. https://doi.org/10.1016/j.canlet.2012.10.017
  20. Park, J.K., Lee, E.J., Esau, C., and Schmittgen, T.D. (2009). Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38, e190-199. https://doi.org/10.1097/MPA.0b013e3181ba82e1
  21. Park, S.J., Cheon, E.J., Lee, M.H., and Kim, H.A. (2013). MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes. Arthritis Rheum. 65, 3141-3152. https://doi.org/10.1002/art.38188
  22. Pencheva, N., Tran, H., Buss, C., Huh, D., Drobnjak, M., Busam, K., and Tavazoie, S.F. (2012). Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151, 1068-1082. https://doi.org/10.1016/j.cell.2012.10.028
  23. Salvat, C., Pigenet, A., Humbert, L., Berenbaum, F., and Thirion, S. (2005). Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage. Osteoarthritis Cartilage 13, 243-249. https://doi.org/10.1016/j.joca.2004.11.008
  24. Santini, P., Politi, L., Vedova, P.D., Scandurra, R., and Scotto d'Abusco, A. (2014). The inflammatory circuitry of miR-149 as a pathological mechanism in osteoarthritis. Rheumatol. Int. 34, 711-716. https://doi.org/10.1007/s00296-013-2754-8
  25. Small, E.M., and Olson, E.N. (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336-342. https://doi.org/10.1038/nature09783
  26. Song, J., Lee, M., Kim, D., Han, J., Chun, C.H., and Jin, E.J. (2013). MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res. Commun. 431, 210-214. https://doi.org/10.1016/j.bbrc.2012.12.133
  27. Swingler, T.E., Wheeler, G., Carmont, V., Elliott, H.R., Barter, M.J., Abu-Elmagd, M., Donell, S.T., Boot-Handford, R.P., Hajihosseini, M.K., Munsterberg, A., et al. (2012). The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 64, 1909-1919. https://doi.org/10.1002/art.34314
  28. Wang, B., Komers, R., Carew, R., Winbanks, C.E., Xu, B., Herman- Edelstein, M., Koh, P., Thomas, M., Jandeleit-Dahm, K., Gregorevic, P., et al. (2012). Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23, 252-265. https://doi.org/10.1681/ASN.2011010055
  29. Wang, M., Sampson, E.R., Jin, H., Li, J., Ke, Q.H., Im, H.J., and Chen, D. (2013). MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis. Res. Ther. 15, R5. https://doi.org/10.1186/ar4133
  30. Xu, J., Li, C.X., Li, Y.S., Lv, J.Y., Ma, Y., Shao, T.T., Xu, L.D., Wang, Y.Y., Du, L., Zhang, Y.P., et al. (2011). MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res. 39, 825- 836. https://doi.org/10.1093/nar/gkq832
  31. Yamasaki, K., Nakasa, T., Miyaki, S., Ishikawa, M., Deie, M., Adachi, N., Yasunaga, Y., Asahara, H., and Ochi, M. (2009). Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum 60, 1035-1041. https://doi.org/10.1002/art.24404
  32. Zhang, R., Ma, J., and Yao, J. (2013). Molecular mechanisms of the cartilage-specific microRNA-140 in osteoarthritis. Inflamm. Res. 62, 871-877. https://doi.org/10.1007/s00011-013-0654-8
  33. Zhu, W., Zhao, Y., Xu, Y., Sun, Y., Wang, Z., Yuan, W., and Du, Z. (2013). Dissection of protein interactomics highlights microRNA synergy. PLoS One 8, e63342. https://doi.org/10.1371/journal.pone.0063342

Cited by

  1. Morphological, Immunocytochemical, and Biochemical Studies of Rat Costal Chondrocytes Exposed to IL-1β and TGF-β1 vol.2017, 2017, https://doi.org/10.1155/2017/9747264
  2. miR-29a regulates vascular neointimal hyperplasia by targeting YY1 vol.50, pp.3, 2017, https://doi.org/10.1111/cpr.12322
  3. microRNA-140 Inhibits Inflammation and Stimulates Chondrogenesis in a Model of Interleukin 1β-induced Osteoarthritis vol.5, 2016, https://doi.org/10.1038/mtna.2016.64
  4. MicroRNAs and Autophagy: Fine Players in the Control of Chondrocyte Homeostatic Activities in Osteoarthritis vol.2017, 2017, https://doi.org/10.1155/2017/3720128
  5. KDM6A promotes chondrogenic differentiation of periodontal ligament stem cells by demethylation of SOX9 vol.51, pp.3, 2017, https://doi.org/10.1111/cpr.12413
  6. Complex Epigenetic Regulation of Chemotherapy Resistance and Biology in Esophageal Squamous Cell Carcinoma via MicroRNAs vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020499
  7. Interplay of Inflammatory Mediators with Epigenetics and Cartilage Modifications in Osteoarthritis vol.6, pp.2296-4185, 2018, https://doi.org/10.3389/fbioe.2018.00022
  8. MicroRNAs and Osteoarthritis vol.7, pp.8, 2018, https://doi.org/10.3390/cells7080092
  9. miR-140-5p/miR-149 Affects Chondrocyte Proliferation, Apoptosis, and Autophagy by Targeting FUT1 in Osteoarthritis vol.41, pp.3, 2018, https://doi.org/10.1007/s10753-018-0750-6
  10. The role of epigenetics in osteoarthritis: current perspective vol.29, pp.1, 2016, https://doi.org/10.1097/bor.0000000000000355
  11. p NNS-Conjugated Chitosan Mediated IGF-1 and miR-140 Overexpression in Articular Chondrocytes Improves Cartilage Repair vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/2761241
  12. Abnormal Expression of DICER1 Leads to Dysregulation of Inflammatory Effectors in Human Synoviocytes vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/6768504
  13. Interleukin-1 receptor antagonist protein (IL-1Ra) and miR-140 overexpression via pNNS-conjugated chitosan-mediated gene transfer enhances the repair of full-thickness cartilage defects in a rabbit mo vol.8, pp.3, 2016, https://doi.org/10.1302/2046-3758.83.bjr-2018-0222.r1
  14. MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis vol.69, pp.1, 2020, https://doi.org/10.1007/s00011-019-01294-0
  15. Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis vol.22, pp.4, 2016, https://doi.org/10.3390/ijms22041742