DOI QR코드

DOI QR Code

Modeling for Drying of Thin Layer of Native Cassava Starch in Tray Dryer

  • Aviara, Ndubisi A. (Department of Agricultural and Environmental Resources Engineering, University of Maiduguri) ;
  • Igbeka, Joseph C. (Department of Agricultural and Environmental Engineering, University of Ibadan)
  • Received : 2016.06.27
  • Accepted : 2016.10.12
  • Published : 2016.12.01

Abstract

Purpose: The drying of a thin layer of native cassava starch in a tray dryer was modeled to establish an equation for predicting the drying behavior under given conditions. Methods: Drying tests were performed using samples of native cassava starch over a temperature range of $40-60^{\circ}C$. We investigated the variation in the drying time, dynamic equilibrium moisture content, drying rate period, critical moisture content, and effective diffusivity of the starch with temperature. The starch diffusion coefficient and drying activation energy were determined. A modification of the model developed by Hii et al. was devised and tested alongside fourteen other models. Results: For starch with an initial moisture content of 82% (db), the drying time and dynamic equilibrium moisture content decreased as the temperature increased. The constant drying rate phase preceded the falling rate phase between $40-55^{\circ}C$. Drying at $60^{\circ}C$ occurred only in the falling rate phase. The critical moisture content was observed in the $40-55^{\circ}C$ range and increased with the temperature. The effective diffusivity of the starch increased as the drying temperature increased from 40 to $60^{\circ}C$. The modified Hii et al. model produced randomized residual plots, the highest $R^2$, and the lowest standard error of estimates. Conclusions: Drying time decreased linearly with an increase in the temperature, while the decrease in the moisture content was linear between $40-55^{\circ}C$. The constant drying rate phase occurred without any period of induction over a temperature range of $40-55^{\circ}C$ prior to the falling rate period, while drying at $60^{\circ}C$ took place only in the falling rate phase. The effective diffusivity had an Arrhenius relationship with the temperature. The modified Hii et al. model proved to be optimum for predicting the drying behavior of the starch in the tray dryer.

Keywords

References

  1. Aghbashlo, M., M. H. Kianmehr and A. Arabhosseini. 2009a. Modeling of thin-layer drying of potato slices in length of continuous band dryer. Energy Conversion and Management 50:1348-1355. https://doi.org/10.1016/j.enconman.2009.01.004
  2. Aghbashlo, M., M. H. Kianmehr, S. Khani and M. Ghasemi. 2009b. Mathematical modelling of thin-layer drying of carrot. International Agrophysics 23:313-317.
  3. Ajibola, O. O. 1989. Thin layer drying of melon seed. Journal of Food Engineering 9:305-320. https://doi.org/10.1016/0260-8774(89)90037-X
  4. Akinpelu, A. O., L. E. F. Amamigbo, A. O. Olojede and A. S. Oyekale. 2011. Health implications of cassava production and consumption. Journal of Agriculture and Social Research 11:118-125.
  5. Akpinar, E. K. and Y. Bicer. 2006. Mathematical modeling and experimental study on thin layer drying of strawberry. International Journal of Food Engineering 2(1):article 5.
  6. Akpinar, E. K., Y. Bicer and A. Midilli. 2003. Modeling and experimental study on drying of apple slices in a convective cyclone dryer. Journal of Food Process Engineering 26:515-541. https://doi.org/10.1111/j.1745-4530.2003.tb00654.x
  7. Akpinar, E. K., Y. Bicer and C. Yaldiz. 2003. Thin layer drying of red pepper. Journal of Food Engineering 59(1):99-104. https://doi.org/10.1016/S0260-8774(02)00425-9
  8. Alibas, I. 2012. Selection of best and suitable thin layer drying mathematical model for vacuum dried red chili pepper. Journal of Biological and Environmental Sciences 6:161-170.
  9. Analytical Software 2008. Statistix 9. Analytical Software Inc. Tallahassee, Florida.
  10. AOAC. 2004. Official Methods of Analysis. 17th edn. Washington DC: Association of Official Analytical Chemists.
  11. Aregbesola, O. A., B. S. Ogunsina, A. E. Sofolahan and N. N. Chime. 2015. Mathematical modeling of thin layer drying characteristics of dika (Irvingia gabonensis) nuts and kernels. Nigerian Food Journal 33(1): 83-89. https://doi.org/10.1016/j.nifoj.2015.04.012
  12. Aviara, N. A. 2010. Drying Characteristics and Storage Stability of Chemically Modified Cassava (Manihot esculenta Crantz), Maize (Zea mays Linn.) and Sorghum (Sorghum bicolor L. Moench.) Starches. Ibadan, Nigeria: University of Ibadan, Ph.D thesis.
  13. Aviara, N. A., J. C. Igbeka and L. M. Nwokocha. 2010a. Effect of drying temperature on physicochemical properties of cassava starch. International Agrophysics 24(3):219-225.
  14. Aviara, N. A., J. C. Igbeka and L. M. Nwokocha. 2010b. Physicochemical properties of sorghum (Sorghum bicolor L. Moench) starch as affected by drying temperature. Agricultural Engineering International: The CIGR Journal 12(2):85-94.
  15. Bozkir, O. 2006. Thin-layer drying and mathematical modeling for washed dry apricot. Journal of Food Engineering 77:146-151. https://doi.org/10.1016/j.jfoodeng.2005.06.057
  16. Corzo, O., N. Bracho, A. Vasquez and A. Pereira. 2010. Determination of suitable thin layer model for air drying of coroba slices (Attelea maripa) at different air temperatures and velocities. Journal of Food Processing and Preservation 34:587-598. https://doi.org/10.1111/j.1745-4549.2009.00377.x
  17. Dadali, G. and B. Ozbek. 2008. Microwave heat treatment of leek: Drying kinetic and effective moisture diffusivity. International Journal of Food Science and Technology 43:1443-1451. https://doi.org/10.1111/j.1365-2621.2007.01688.x
  18. Dixit, O., K. Treppe, A. Khaidurova and N. Mollekopt. 2012. Experimental investigation and theoretical modeling of absolute convective drying of starch. Journal of Food Engineering 111:14-20. https://doi.org/10.1016/j.jfoodeng.2012.02.004
  19. Doymaz, I. 2004. Convective air drying characteristics of thin layer carrots. Journal of Food Engineering 61:359-364. https://doi.org/10.1016/S0260-8774(03)00142-0
  20. Doymaz, I. 2007. The kinetics of forced convective air-drying of pumpkin slices. Journal of Food Engineering 79:243-248. https://doi.org/10.1016/j.jfoodeng.2006.01.049
  21. Doymaz, I. 2009. Thin-layer drying of spinach leaves in a convective dryer. Journal of Food Process Engineering 32:112-125. https://doi.org/10.1111/j.1745-4530.2007.00205.x
  22. FAO. 2008. The Impact of HIV/AIDs on the Agricultural Sector. Corporate Document Repository. Food and Agricultural Organization of the United Nations, Rome, Italy. Downloaded from www.fao.org/DOCREP/005/y4636E/y4636e05.htm 2008 on 06/08/2010.
  23. Gazor, H. R. and O. R. Roustapour. 2015. Modeling drying kinetics of pretreated sour cherry. International Food Research Journal 22(2):476-481.
  24. Hamdami, N., M. Sayyad and A. Oladegaragoze. 2006. Mathematical modeling of thin layer drying kinetics of apple slices. IUFoST DOI: 10.1051/IUFoST:20060324, 1949-1958.
  25. Hii, C. L., C. L. Law and M. Cloke. 2008. Modelling of thin layer drying kinetics of cocoa bean during artificial and natural drying. Journal of Engineering Science and Technology 3(1):1-10.
  26. Jayas, D. S., S. Cenkowski, S. Pabis. and W. E. Muir. 1991. Review of thin layer drying and wetting equations. Drying Technology 9(3):551-588. https://doi.org/10.1080/07373939108916697
  27. Kajuna, S. T. A. R., V. C. K. Silayo, A. Mkenda and P. J. J. Makungu, 2001. Thin-layer drying of diced cassava roots. African Journal of Science and Technology 2(2):94-100.
  28. Karathanos, V. T. and V. G. Belessiotis 1999. Application of a thin layer equation to drying data of fresh and semi-dried fruits. Journal of Agricultural Engineering Research 74:355-361. https://doi.org/10.1006/jaer.1999.0473
  29. Kaya, A., O. Aydin and C. Demirtas. 2007. Drying kinetics of red delicious apple. Biosystems Engineering 96(4):517-524.
  30. Madamba, P. S., R. H. Driscoll and K. A. Buckle. 1996. The thin layer drying characteristics of garlic slices. Journal of Food Engineering 29(1):75-97. https://doi.org/10.1016/0260-8774(95)00062-3
  31. Meisami-asl, E., S. Rafiee, A. Keyhani and A. Tabatabaeefar. 2010. Determination of suitable thin layer drying curve model for apple slices. Plant Omics Journal 3(3):103-108.
  32. Menges, H. O. and C. Ertekin, 2006. Mathematical modeling of thin layer drying of golden apples. Journal of Food Engineering 77:119-125. https://doi.org/10.1016/j.jfoodeng.2005.06.049
  33. Midilli, A. and H. Kucuk. 2003. Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management 44(7):1111-1122. https://doi.org/10.1016/S0196-8904(02)00099-7
  34. Mohammadi, A., S. Rafiee, A. Keyhani and Z. Emam-Djomeh. 2008. Estimation of thin-layer drying characteristics of Kiwifruit (cv. Hayward) with use of Page's model. American-Eurasian Journal of Agricultural and Environmental Sciences 3:802805.
  35. Mohapatra, D. and P. S. Rao. 2005. A thin layer drying model of parboiled wheat. Journal of Food Engineering 66:513-518. https://doi.org/10.1016/j.jfoodeng.2004.04.023
  36. Muhidong, J., L. H. Chen and D. B. Smith. 1992. Thin-layer drying of kenaf. Transactions of the ASAE 35(6):1941-1944. https://doi.org/10.13031/2013.28819
  37. Onuoha, L. N., N. A. Aviara, T. A. Abdulrahim and A. T. Suleiman. 2013. Influence of cultivar on the predictive performance of a moisture transport model developed for parboiled paddy drying. Drying Technology 31(5):494-506. https://doi.org/10.1080/07373937.2012.709206
  38. Perez, N. E. and M. E. Schmalko. 2009. Convective drying of pumpkin: Influence of pretreatment and drying temperature. Journal of Food Process Engineering 32: 88-103. https://doi.org/10.1111/j.1745-4530.2007.00200.x
  39. Phillips, T. P., D. S. Taylor, L. Sani and M. O. Akoroda. 2004. The Global Cassava Development Strategy: A Cassava Industrial Revolution in Nigeria, the Potential for a New Industrial Crop. International Fund for Gricultural Development, Food and Agricultural Organization of the United Nations, Rome, Italy.
  40. Senadeera, W., B. R. Bhandari, G. Young and B. Wijesinghe. 2003. Influence of shapes of selected vegetable materials on drying kinetics of fluidized bed drying. Journal of Food Engineering 58:277-283. https://doi.org/10.1016/S0260-8774(02)00386-2
  41. Shimelis, E. A., M. Meaza and S. K. Rakshit. 2006. Physicochemical properties, pasting behaviour and functional characteristics of flours and starches from improved bean (Phaseolus vulgaris L.) varieties grown in East Africa. Agricultural Engineering International: The CIGR EJournal Manuscript FP 05 015 vol VIII.
  42. Soni, P. L., H. Sharma, D. Dun and M. Gharia. 1993. Physicochemical properties of quercus leucotrichophora (oak) starch. Starch 45:127-130. https://doi.org/10.1002/star.19930450403
  43. Soni, P. L., H. Sharma, H. C. Srivastava and M. Gharia. 1990. Physicochemical properties of canna edulis- comparison with maize starch. Starch 42:460-464. https://doi.org/10.1002/star.19900421203
  44. Syarief, A. M., R. V. Morey and R. J. Gustafson. 1984. Thin layer drying rates of sun flower seed. Transactions of the ASAE 27:195-200. https://doi.org/10.13031/2013.32759
  45. Tanko, H. M., D. J. Carrier, S. Sokhansanj and T. G. Crowe. 2005. Drying feverfew (Tanacetum parthenium L.). Canadian Biosystems Engineering 47:3.57-3.61.
  46. Togrul, I. T. and D. Pehlivan. 2002. Mathematical modeling of solar drying of apricots in thin layers. Journal of Food Engineering 55:209-216. https://doi.org/10.1016/S0260-8774(02)00065-1
  47. Verma, L. R., R. A. Bucklin, J. B. Endan and F. T. Wratten. 1985. Effects of drying air parameters on rice drying models Transactions of the ASAE 28:296-301. https://doi.org/10.13031/2013.32245
  48. Wang, C. Y. and R. P. Singh. 1978. A single layer drying equation for rough rice, ASAE Paper No. 3001, St. Joseph, MI.
  49. Yaldiz, O. and C. Ertekin. 2001. Thin layer solar drying of some different vegetables. Drying Technology 19: 583-596. https://doi.org/10.1081/DRT-100103936
  50. Yaldiz, O., C. Ertekin and H. I. Uzun. 2001. Mathematical modeling of thin layer solar drying of Sultana grapes. Energy 26:457-465. https://doi.org/10.1016/S0360-5442(01)00018-4
  51. Zomorodian, A. A. and M. Dadashzadeh. 2009. Indirect and mixed mode solar drying mathematical models for Sultana grape. Journal of Agricultural Sciences and Technology 11:391-400.